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We reconsider the percolation approach of Russo, Aizenman, and Higuchi for
showing that there exist only two phases in the Ising model on the square lattice.
We give a fairly short alternative proof which is only based on stochastic monoto-
nicity and avoids the use of symmetry inequalities originally needed for some
background results. Our proof extends to the Ising model on other planar lattices
such as the triangular and honeycomb lattice. We can also treat the Ising antifer-
romagnet in a homogeneous field and the hard-core lattice gas model onZ2.
© 2000 American Institute of Physics.@S0022-2488~00!00103-1#

I. INTRODUCTION

One of the fundamental results on the two-dimensional ferromagnetic Ising model i
following theorem obtained independently in the late 1970s by Aizenman1 and Higuchi2 on the
basis of the seminal work of Russo.3

Theorem: For the ferromagnetic Ising model onZ2 with no external field and inverse tem
peratureb.bc , there exist only two distinct extremal Gibbs measuresm1 and m2.

The basic technique initiated by Russo consists of an interplay of three features of the
model:

~1! the strong Markov property for random sets defined by geometric conditions involving
ters of constant spin,

~2! the symmetry of the interaction under spin-flip and lattice automorphisms, and
~3! the ferromagnetic character of the interaction which manifests itself in FKG order and po

correlations.

These ingredients led to a detailed understanding of the geometric features of typical co
rations as described by the concepts of percolation theory. In addition to these tools, the aut
Refs. 1–3 also needed the result that the limiting Gibbs measure with6 boundary condition is a
mixture of the two pure phases. This result of Messager and Miracle-Sole´4 had been had bee
obtained by quite different means, namely some correlation inequalities of symmetry type
spirit of Griffiths–Kelly–Sherman~GKS! and Lebowitz inequalities. While such symmetry i
equalities are a beautiful and powerful tool, they are quite different in character from the For´n–
Kasteleyn–Ginibre~FKG! inequality and have their own restrictions. It is therefore natural to
whether Russo’s random cluster method is flexible enough to prove the theorem without re
to symmetry inequalities. On the one hand, this would allow one to extend the theorem to m
with less symmetries, while on the other hand one might gain a deeper understanding of p
geometric features of typical configurations.

In this paper we propose such a purely geometric reasoning which is only based on th
above-mentioned features and avoids the use of the symmetry inequalities of Messag

a!Electronic mail: georgii@rz.mathematik.uni-muenchen.de
b!Electric mail: higuchi@math.kobe-u.ac.jp
11530022-2488/2000/41(3)/1153/17/$17.00 © 2000 American Institute of Physics
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Miracle-Solé.4 Despite this reduction of tools we could simplify the proof by an efficient com
nation of known geometric arguments. These include:

~1! the Burton–Keane uniqueness theorem for infinite clusters,5

~2! a version of Zhang’s argument for the impossibility of simultaneous plus- and mi
percolation inZ2 ~cf. Theorem 5.18 of Ref. 6!,

~3! Russo’s symmetry trick for simultaneous flipping of spins and reflection of the lattice,3 and
~4! Aizenman’s idea of looking at contour intersections in a duplicated system.1

We have tried to keep the paper reasonably self-contained, so that the reader will
complete proof of the theorem. As a payoff of the method we also obtain some generalizatio
the one hand, the arguments carry over to the Ising model on other planar lattices such
triangular or the hexagonal lattice. On the other hand, in the case of the square lattice the
cover the antiferromagnetic Ising model in an external field as well as the hard-core lattic
model.

II. SETUP AND BASIC FACTS

Although we assume that the reader is familiar with the definition of the Ising model, l
start by recalling a number of fundamental facts and introducing some notations. We a
throughout that the inverse temperatureb exceeds the Onsager thresholdbc , and that there is no
external field,h50. The main ingredients we need are as follows.

~1! Theconfiguration spaceV5$21,1%Z2
, which is equipped with the Borels-algebraF and

the locals-algebrasFL of events depending only on the spins inL,Z2.
~2! TheGibbs distributionsmL

v in finite regionsL,Z2 with boundary conditionvPV. These
enjoy theMarkov property, which says thatmL

v(A) for APFL depends only on the restriction o
v to the boundary]L5$x¹L:ux2yu51 for someyPL% of L, and thefinite energy property,
which states thatmL

v(A).0 whenBÞAPFL .
~3! The Gibbs measuresm on ~V,F! which, by definition, satisfym(•uFLc)(v)5mL

v for
m-almost allv and any finiteL; we writeG for the convex set of all Gibbs measures and exG for
the set of all extremal Gibbs measures.

~4! The strong Markov propertyof Gibbs measures, stating thatm(•uFGc)(v)5mG(v)
v for

m-almost allv whenG is any finiterandomsubset ofZ2 which isdetermined from outside, in that
$G5L%PFLc for all finite L, andFGc is thes-algebra of all eventsA outsideG in the sense tha
Aù$G5L%PFLc for all finite L. ~Using the conventionsmB

v 5dv and FBc5F we can in fact
allow thatG takes the valueB.! For a proof one simply splitsV into the disjoint sets$G5L% for
finite L.

~5! The stochastic monotonicity~or FKG order! of Gibbs distributions. Writingmdn when
m( f )dn( f ) for all increasing local~or, equivalently, all increasing bounded measurable! real

functionsf on V, we havemL
vdmL

v8 whenv<v8, andmL
vdmD

v whenD,L andv[11 on L\D
~the opposite relation holds whenv[21 on L\D!.

~6! The pure phasesm1,m2PG obtained as limits forL↑Z2 of mL
v with v[11 and21,

respectively, their invariance under all graph automorphisms ofZ2, the sandwich relationm2

dmdm1 for any othermPG, and the resulting extremality ofm1 andm2.
~7! The characterization of extremal Gibbs measures by theirtriviality on the tail s-algebra

T5ù$FLc:L,Z2 finite%; the fact that extremal Gibbs measures havepositive correlations; and
the extremal decompositionrepresenting any Gibbs measure as the barycenter of a mass dis
tion on exG.

A general account of Gibbs measures can be found in Ref. 7, and Ref. 6 contains an e
tion of the Ising model and its properties related to stochastic monotonicity.

We will also use a class of transformations ofV which preserve the Ising Hamiltonian, an
thereby the classG of Gibbs measures. These transformations are as follows.

~1! The spin-flip transformation T:v5(v(x))xPZ2→(2v(x))xPZ2.
0 Jun 2008 to 129.187.254.47. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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~2! The translationsqx ,xPZ2, which are defined byqxv(y)5v(y2x) for yPZ2, and in
particular the horizontal and vertical shiftsqhor5q (1,0) andqvert5q (0,1) , respectively.

~3! The reflectionsin lines l through lattice sites: For anykPZ we write

Rk,hor:Z
2{x5~x1 ,x2!→~x1,2k2x2!5Z2

for the reflection in the horizontal line$x25k%, and similarly Rk,vert for the reflection in the
vertical line $x15k%. For k50 we simply writeRhor5R0,hor and Rvert5R0,vert. All these reflec-
tions act canonically onV.

We will investigate the geometric behavior of typical configurations inhalf-planesof Z2.
These are sets of the form

p5$x5~x1 ,x2!PZ2:z2:xi>k%

with kPZ,i P$1,2%, or with ‘‘>’’ replaced by ‘‘<.’’ The line l 5$xPZ2:xi5k% is called the
associatedboundary line. In particular, we will consider the following

~1! The upper half-planepup5$x5(x1 ,x2)PZ2:x2>0%.
~2! The downwards half-planepdown5$x5(x1 ,x2)PZ2:x2<0%, and the analogously define

right half-planep right and left half-planep left . We will also work with
~3! The left horizontal semiaxisl left5$x5(x1 ,x2)PZ2:x1<0,x250%, and
~4! the right semiaxisl right5$x5(x1 ,x2)PZ2:x1>0,x250%.
In the rest of this section we state three fundamental results on percolation in the Ising m

By the symmetry between the spin values11 and21, these results also hold when the minus a
plus signs are interchanged. Similarly, all notations introduced with one sign will be used ac
ingly for the opposite sign.

We first recall some basic concepts of percolation theory. A finitepath is a sequencep
5(x1 ,x2 ,...,xk) of pairwise distinct lattice points such that, for anyi P$2,...,k%, xi 21 andxi are
nearest neighbors~i.e., have Euclidean distance 1!. The numberk is called thelengthof p, andx1

andxk are its starting and final point, respectively. A pathp is called apath in a subset S,Z2 if
all xi belong toS. We say thatp meets or touches Sif some xi is contained inS or a nearest
neighbor of a point inS. We will also speak of infinite paths (x1 ,x2 ,...) anddoubly infinite paths
(...,x21 ,x0 ,x1 ,...) in the obvious sense. A pathp is called acircuit if x1 and xk are nearest
neighbors, and asemicircuitin a half-planep if it is contained inp andx1 andxk belong to the
boundary line ofp. A regionC,Z2 is calledconnectedif for any x,yPC there exists a path in
C from x to y. A cluster in a regionS,Z2 is a maximal connected subsetC of S. It is called
infinite if its cardinality is infinite. Infinite clusters will be denoted by the letterI, with suitable
sub- and superscripts.

Given any configurationvPV, we consider the setS1(v)5$xPZ2:v(x)511% of 1 spins.
A path ~respectively, circuit, semicircuit, cluster! in S1(v) is called a1path ~respectively,
1circuit, 1semicircuit, 1cluster! for v, and two pointsx, y are said to be1connectedif there
exists a1path fromx to y.

We also need to work with the conjugate graph structure onZ2, for which two points are
considered as neighbors if their Euclidean distance is either 1 or&, i.e., if they are either neares
neighbors or diagonal neighbors. This graph structure is indicated by a star and leads
concepts of*paths,*circuits, *semicircuits,*connectedness,*clusters,1*paths,1*semicircuits,
and so on. Note that each path isa fortiori a *path, and each cluster is contained in some*cluster.

The starting point of the random cluster method is the following result of Refs. 8 and 3
E1 denote the event that there exists an infinite1cluster I 1 in Z2, and defineE2,E1* ,E2*
analogously. Note thatE1,E1* andE2,E2* . ~Throughout this paper we will use the letterE
to denote events concerning the existence of infinite clusters.!

Lemma 2.1 (Existence of infinite clusters): IfmPG is different fromm2, there exists with
positive probability an infinite1 cluster. That is,m(E1).0 whenmÞm2.

Proof: Suppose thatm(E1)50. Then any given squareD is almost surely surrounded by
2*circuit, and with probability close to 1 such a circuit can already be found within a sq
0 Jun 2008 to 129.187.254.47. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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L.D providedL is large enough. If this occurs, we letG be the largest random subset ofL which
is the interior of such a2*circuit. ~The largest such set exists because the union of such se
again the interior of a2*circuit.! In the alternative case we setG5B. By maximality, G is
determined from outside. The strong Markov property together with the stochastic monoto
mG

2dm2 therefore implies~in the limit L↑Z2! thatmdm2 on FD . SinceD was arbitrary andm2

is minimal we find thatm5m2, and the lemma is proved. h

The next lemma is a variant of another result of Russo.3

Lemma 2.2 (Flip-reflection domination): LetmPG and R be any reflection, and suppose th
for m-almost all v each finiteD,Z2 is surrounded by an R-invariant*circuit c such thatv
>R+T(v) on c. Thenmfm+R+T.

Proof: Another way of stating the assumption is that for any finiteR-invariantD andm-almost
all v there exists a finiteR-invariant random setG(v).D such thatv>R+T(v) on ]G(v).
Given anye.0, we can thus find anR-invariantL so large that with probability at least 12e such
an R-invariant G~v! exists withinL. Since the union of any two suchG~v!’s enjoys the same
properties, we can assume thatG~v! is chosen maximal inL; in the case when no suchG~v! exists
we setG~v!5B. The maximality ofG implies that the events$G5G% are measurable with respe
to FL\G . For any increasingFD-measurable functionf >0 we thus get from the strong Marko
property

m~ f !>m~m ˙̇
G~ f !1$GÞB%!.

However, ifG~v!ÞB thenv>R+T(v) on ]G~v!. By stochastic monotonicity, for suchv we have

mG~v!
v ~ f !>mG~v!

R+T~v!~ f !5mG~v!
v ~ f +R+T!,

where the identity follows from theR-invariance ofG and theR+T-invariance of the interaction
Hence

m~ f !>m~ f +R+T1$GÞB%!>m~ f +R+T!2ei f i` .

The lemma thus follows by lettinge→0 andD↑Z2. h

A third useful result of Russo3 is the following. To state it we need to introduce two notatio
First, let

u5m1~0PI 1* !

be them1-probability that the origin belongs to an infinite1*cluster. Lemma 2.1 implies tha
u.0. Second, for a half-planep with boundary linel and a*semicircuits in p we write Ints for
the unique subset ofZ2 which is invariant under the reflectionR in l and satisfiespù](Int s)
5s; we call Ints the interior ofs.

Lemma 2.3 (Point-to-semicircuit lemma): Letp be some half-plane with boundary line l, x
P l, ands a *semicircuit inp with interior L5Int s∋x. Let vPV be such thatv[11 ons. Then

mL
v~x is in L1* connected tos!>u/2.

Proof: By stochastic monotonicity we can assume thatv[21 on ]L\s. We then havev
>R+T(v) on ]L, and thereforemL

vfmL
v+R+T. To exploit this relation we letBx,s be the event

that there exists a1*path inL from x to s,Cx,s the event thatx is surrounded by a1*circuit in
Løs which is 1*connected tos, andDx,s5Bx,søCx,s . Then

mL
v~Dx,søRT~Dx,s!!51. ~1!

Indeed, suppose thatv(x)511, but Bx,s does not occur. Then the1*cluster containingx does
not meets. Its outer boundary belongs to a2*cluster, which either touchesR(s) so that
0 Jun 2008 to 129.187.254.47. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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R+T(Cx,s) occurs, or not—in which case we consider the1*cluster containing its outer boundary
and so on. After finitely many steps we see that eitherCx,s or R+T(Cx,s) must occur.~1! is an
immediate consequence. It follows thatmL

v(Dx,s)>1/2. Hence

mL
v~Bx,s!>mL

v~Bx,suCx,s!m~Dx,s!>mL
v~Bx,suCx,s!/2.

But if Cx,s occurs then there exists a largest random setG,L containingx such that]G forms a
1*circuit and is1*connected tos. Writing Bx,]G for the event thatx is 1*connected to]G and
using the strong Markov property we thus find that

mL
v~Bx,suCx,s!5mL

v~mG
1~Bx,]G!uCx,s!>u

becausemG
1(Bx,]G)>u by stochastic monotonicity. Together with the previous inequality

gives the result. h

III. PERCOLATION IN HALF-PLANES

In this section we will prove that there exist plenty of infinite clusters of constant spin in
half-planes ofZ2. In particular, this will show that all translation invariantmPG are mixtures of
m1 andm2. We will use two pearls of percolation theory, the Burton–Keane uniqueness the
for infinite clusters5 and Zhang’s argument for the nonexistence of two infinite clusters of opp
sign in Z2. ~In the present context, these two results were obtained first in Ref. 9!.

For a given half-planep we letEp
1 denote the event that there exists an infinite1cluster inp.

When this occurs, we will writeI p
1 for such an infinite1cluster in p. ~As we will see, such

clusters are unique, so that this notation does not lead to conflicts.! In the case of the standar
half-planes, we will only keep the directional index and omit thep; for example, we writeEup

1 for
Epup

1 . Similar notations will be used for1*clusters and for the minus sign instead of the plus si

Let us say that~p,p8! is a pair ofconjugate half-planesif p and p8 share only a common
boundary line. An associated pair (I p

1 ,I p8
1 ) or (I p

2 ,I p8
2 ) of infinite clusters of the same sign inp

and p8 will be called aninfinite butterfly. ~This name alludes to the assumption that the t
infinite ‘‘wings’’ have the same ‘‘color,’’ but is not meant to suggest that they are symmetric
connected to each other, although the latter will turn out to be true.! We will say that a statemen
holdsG-almost surely if it holdsm-almost surely for allmPG.

Lemma 3.1 (Butterfly lemma):G-almost surely there exists at least one infinite butterfly.
Proof: Suppose the contrary. By the extremal decomposition theorem and the fact th

existence of infinite butterflies is a tail measurable event, there is then somemPexG for which
there exists no infinite butterflym-almost surely. We will show that this is impossible.

Step 1. First we observe thatm is R+T-invariant for all reflectionsR5Rk,hor or Rk,vert, and in
particular is periodic under translations. Indeed, let~p,p8! be conjugate half-planes with commo
boundary linel andR the reflection inl mappingp ontop8. By the absence of infinite butterflies
at least one of the half-planesp and p8 contains no infinite2cluster, and this or the othe
half-plane contains no infinite1cluster. In view of the tail triviality ofm, we can assume tha
m(Ep

2)50. This means that form-almost all v every finite D,p is surrounded by some
1*semicircuit g in p. For such ag,c5gøR(g) is an R-invariant *circuit that surrounds
DøR(D) and satisfiesv>R+T(v) on c. By Lemma 2.2, this gives the flip-reflection dominatio
mfm+R+T. Since also m(Ep

1)50 or m(Ep8
1 )50, we conclude in the same way th

mdm+R+T, so thatm5m+R+T. Since bothqhor
2 andqvert

2 are compositions of two reflections, th
invariance under the translation group (qx)xP2Z2 follows.

Step 2. We now take advantage of the Burton–Keane uniqueness theorem,5 stating that for
every periodicm with finite energy there exists at most one infinite1 ~respectively,2! cluster,
and Zhang’s symmetry argument~cf. Ref. 6, Theorem 5.18! deducing from this uniqueness th
absence of simultaneous1 and2percolation.~In Ref. 5, the uniqueness of the infinite cluster
only stated for translation invariantm, but the argument works in the same way by applying
ergodic theorem to the subgroup (qx)xP2Z2. It is also not shown there that the finite ener
0 Jun 2008 to 129.187.254.47. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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property remains valid under ergodic decomposition. Although this follows from Theorem~14.17!
of Ref. 7 in the present setting, and a similar argument in general, we do not need thi
because ourm is extremal, and therefore (qx)xP2Z2-ergodic by Proposition~14.9! of Ref. 7!.

We start noting that, by the flip-reflection symmetry ofm, m is different fromm1 andm2, so
that by Lemma 2.1, the tail triviality ofm, and the Burton–Keane uniqueness theorem there e
both a unique infinite1cluster I 1 and a unique infinite2cluster I 2 in the whole planeZ2

m-almost surely. We now choose a squareL5@2n,n#2,Z2 so large thatm(LùI 1ÞB).
122212. Let ]kL be the intersection of]L with the kth quadrant, and letAk

1 be the increasing
event that there exists an infinite1path inLc starting from some site in]kL. DefineAk

2 analo-
gously. Since

$LùI 1ÞB%, ø
k51

4

Ak
1

andm ~as an extremal Gibbs measure! has positive correlations, it follows that

)
k51

4

m~V\Ak
1!<mS ù

k51

4

V\Ak
1D<m~LùI 15B !,2212,

whence there exists somekP$1,...,4% such thatm(V\Ak
1),223. For notational convenience w

assume thatk51. By the above-shown flip-reflection symmetry, we find that

m~A1
1ùA2

2ùA3
1ùA4

2!.124•22351/2,

which is impossible because on this intersection the infinite clustersI 1 and I 2 cannot be both
unique. This contradiction concludes the proof of the lemma. h

The butterfly lemma leads immediately to the following result first obtained by Message
Miracle-Solé4 by means of correlation inequalities of symmetry type; the following proof
peared first in Ref. 6.

Corollary 3.2 (Periodic Gibbs measures): Any periodicmPG is a mixture ofm1 and m2.
Proof: SupposemPG is invariant under (qx)xPpZ2 for some periodp>1. Conditioningm on

any periodic tail eventE we obtain again a periodic Gibbs measure. It is therefore sufficien
show thatm(E1ùE2)50. Indeed, the butterfly lemma then shows thatm(E1)1m(E2)51, and
Lemma 2.1 implies thatm(•uE1)5m1 andm(•uE2)5m2 whenever these conditional probabil
ties are defined. Hencem5m(E1)m11m(E2)m2.

Suppose by contraposition thatm(E1ùE2).0. SinceE1ùE2 is invariant and tail measur
able, we can in fact assume thatm(E1ùE2)51; otherwise we replacem by m(•uE1ùE2). By
the butterfly lemma, there exists a pair~p,p8! of conjugate half-planes, saypup andpdown, and a
sign, say1, such that both half-planes contain infinite clusters of this sign with positive prob
ity. Sincem(E2)51 by assumption, we can find a large squareD such that with positive prob-
ability D meets infinite1clusters inpup and pdown and also an infinite2cluster. This2cluster
leavesD either on the left or on the right between the two infinite1clusters. We can assume th
the latter occurs with positive probability. By the finite energy property, it then follows that
m(A0).0, where forkPpZ we writeAk for the event that the point (k,0) belongs to a two-sided
infinite 1path with its two halves staying inpup andpdown, respectively, and (k11,0) belongs to
an infinite2cluster.

Let A be the event thatAk occurs for infinitely manyk,0 and infinitely manyk.0. The
horizontal periodicity and Poincare´’s recurrence theorem@cf. Lemma~18.15! of Ref. 7# then show
that m(A0\A)50, and thereforem(A).0. But onA there exist infinitely many2clusters which
are separated from each other by the infinitely many ‘‘vertical’’1paths. This contradicts the
Burton–Keane theorem. h
0 Jun 2008 to 129.187.254.47. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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The preceding argument actually shows thatm(E2* ùE1* )50 whenevermPG is periodic.
Sincem1(E1)51 by Lemma 2.1 and tail triviality, this shows that in the1phase the1spins form
an infinite sea with only finite islands.

Corollary 3.3 (Plus-sea in the plus-phase):m1(E2* )50. Hence, m1-almost surely there
exists a unique infinite1cluster I1 in Z2 which surrounds each finite set.

We note that in contrast to Zhang’s argument~cf. Theorem 5.18 of Ref. 6! our proof of the
preceding corollary does not rely on the reflection invariance ofm1 but only on its periodicity,
and thus can be extended to the setting of Sec. VI.

We conclude this section with the observation that percolation in half-planes is not affect
spatial shifts.

Lemma 3.4 (Shift lemma): Letp and p̃ be two half-planes such thatp.p̃, i.e., p and p̃ are
translates of each other. Then Ep

15Ep̃
1 G-almost surely, and similarly with2 instead of1.

Proof: Since trivially Ep
1.Ep̃

1 , we only need to show thatEp
1,Ep̃

1 G-almost surely. For
definiteness we consider the case whenp5pup5$x2>0% and p̃5$x2>1%. Take anymPexG,
and suppose thatm(Ep̃

1)50. Then for almost allv and any n>1 there exists a smalles
2*semicircuitsn(v) in p̃ containingDnøsn21(v) in its interior; hereDn5@2n,n#3@1,n# and
s05B. Let xn(v)P l left andyn(v)P l right be the two points facing the two end points ofsn(v);
these areFp̃-measurable functions ofv, and the random sets$xn ,yn% are pairwise disjoint. LetAn

be the event that the spins atxn andyn take value21.
We claim thatAn occurs for infinitely manyn with probability 1. Indeed, fix anyN>1, x

P l left , yP l right and letBN,x,y5$xN5x,yN5y%ùùn.NAn
c . Then we can write

m~ANùBN,x,y!5m~m˙ $x,y%~v~x!5v~y!521!1BN,x,y
!>d2m~BN,x,y!

becauseBN,x,y only depends on the configuration outside$x,y%, and the one-point conditiona
probabilities ofm are bounded from below byd5@11e8b#21. Summing overx,y we obtain
m(ùn>N An

c)<(12d2)m(ùn.N An
c), and iteration givesm(ùn>N An

c)50. LettingN→` we get
the claim.

We now can conclude that with probability 1 each box@2n,n#3@0,n# is surrounded by a
2*semicircuit in pup, which means thatm(Eup

1 )50. As m(Ep̃
1) is either 0 or 1, the lemma

follows. h

IV. UNIQUENESS OF SEMI-INFINITE CLUSTERS

Our next subject is the uniqueness of infinite clusters in half-planes, together with the str
property that such clusters touch the boundary line infinitely often. This was already a key
of Russo.3

Lemma 4.1 (Line touching lemma): For any half-planep, there existsG-almost surely at mos
one infinite1 ~respectively1* ! cluster Ip

1 ~respectively, Ip
1* ! in p. When it exists, this infinite

clusterG-almost surely intersects the boundary line l ofp infinitely often, in the sense that outsid
any finiteD one can find an infinite path in this cluster starting from l.

Just as Russo did, we derive this lemma from the absence of percolation for the1phase in the
upper half-planepup with 2boundary condition inpup

c ~which implies the uniqueness of th
semi-infinite Gibbs measure, by the argument of Lemma 2.1!. But for the latter we will give here
a different argument using stochastic domination by a translation invariant Gibbs measu
Corollary 3.2. To state the result we write6 for the configuration which is11 onpup and21 on
pup

c , and consider the semi-infinite limit

mup
6 5 lim

D↑pup

mD
6 ~2!

which exists by stochastic monotonicity.
Lemma 4.2 (No percolation on a bordered half-plane)mup

6 (Eup
1* )50.
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Proof: To begin we note thatmup
6 is invariant under horizontal translations and stochastic

maximal in the set of all Gibbs measures onpup with 2boundary condition inpup
c . This follows

just as in the case of the plus-phasem1 on the whole lattice. In particular,mup
6 is trivial on the

pup-tail Tup5ù$Fpup\L :L,pupfinite%. We think ofmup
6 as a probability measure onV for which

almost all configurations are identically equal to21 on pup
c .

Next we consider the downwards translatesmn,2
1 5mup

6 +qvert
2n , n>0. Evidently,mn,2

1 is ob-
tained by an analogous infinite-volume limit in the half-plane$x2>2n%. This shows thatmn,2

1

dmn11,2
1 by stochastic monotonicity, so that the stochastically increasing limitm2

1

5 limn→`mn,2
1 exists. Clearlym2

1PG. Also, m2
1 inherits the horizontal invariance of themn,2

1 and
is in addition vertically invariant. Corollary 3.2 therefore implies thatm2

15am21(12a)m1 for
some coefficientaP@0,1#.

We claim thata.0. For n>1 let Bn denote the event that the origin is2*connected to the
horizontal line$x252n%. By the finite energy property and the horizontal ergodicity ofmn,2

1 ,
there exist formn,2

1 -almost all v some random integersmleft(v),0,mright(v) such thatv
[21 on

s~v!5$xPZ2:x1P$mleft~v!,mright~v!%,2n<xz<0%.

Together with a segment of the line$x252n21% on which v521mn,2
1 -almost surely,s~v!

forms a2semicircuit inpdown surrounding the origin. An immediate application of the stro
Markov property~applied to the largest suchs in a large box! and the point-to-semicircuit lemm
thus implies thatmn,2

1 (Bn)>u/2. Therefore, writingE0,m
2* for the event that the origin belongs t

some2* cluster of size at leastm we find mn,2
1 (E0,m

2* )>u/2 whenn>m. Letting firstn→` and
thenm→` we see thatm2

1(E2* )>u/2. Sincem1(E2* )50 by Corollary 3.3, it follows thata
>u/2, and the claim is proved.

To conclude the proof we observe that

mup
6 ~Eup

1* !<m2
1~E1* !512a,1,

again by Corollary 3.3. Sincemup
6 is trivial on Tup, the lemma follows. h

We are now able to prove Lemma 4.1 along the lines of Russo.3

Proof of Lemma 4.1:For definiteness we assume thatp5pup; other half-planes merely
correspond to a change of coordinates. We consider only infinite1clusters inpup; the case of
1*clusters is similar. It is also clear that any result proved for the1sign is also valid with the
2sign.

Uniqueness:The uniqueness of infinite1clusters inpup is a consequence of the secon
statement, the line-touching property for infinite2*clusters. Indeed, suppose there exists
infinite 2*cluster inpup; then each finite set inpup is surrounded by a1semicircuit, so that any
two infinite 1paths are necessarily1connected to each other. In the alternative case when
infinite 2*cluster I up

2* in pup exists, thisI up
2* meetsl left or l right infinitely often, so that each

infinite 1cluster must meet the other half-line infinitely often. Hence, two such1clusters must
cross each other, and are thus identical.

Line touching:Let mPexG andxPpup and consider the eventAx
1 thatx belongs to an infinite

1cluster inpup which does not touch the horizontal axisl hor. We will show thatm(Ax
1)50. Once

this is established, we can take the union over allx and use the finite energy property to see th
for each finiteD the event ‘‘an infinite1cluster inpup is not connected tol hor outsideD’’ also has
probability zero, which means that almost surely any infinite1cluster in pup must meetl hor

infinitely often.
Intuitively, if Ax

1 occurs then the infinite1cluster containingx is separated froml hor by an
infinite 2*path; but the spins ‘‘above’’ this path feel only the2boundary condition and thu
believe to be in the2phasem2, so that they will not form an infinite1cluster.

To make this intuition precise we fix some integerk>1 and consider the eventAx,k
1 that x

belongs to a1cluster of size at leastk which does not meetl hor. Take a boxD,pup containing
0 Jun 2008 to 129.187.254.47. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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x and so large that there exists no path of lengthk from x to Dc. For vPAx,k
1 we consider the

largest setG(v),D containingx such thatv521 on]G(v)\]upD, where]upD5]Dùpup. We
also consider the eventEx,k

1 thatx belongs to a1cluster inpup of size at leastk. Using the fact that
Ax,k

1 is contained in theFD-measurable event$G exists%ùEx,k
1 , we obtain by the strong Markov

property and the stochastic monotonicity of Gibbs distributions that

m~Ax,k
1 !<m~mĠ~Ex,k

1 !<mD
6~Ex,k

1 !,

where the6 boundary condition is defined as in~2!. Now, taking first the limitD↑pup as in ~2!
and then lettingk→` we find thatm(Ax

1)<mup
6 (Eup

1 ). But the last expression vanishes by Lemm
4.2. h

The butterfly lemma and shift lemma together still leave the possibility that all infinite
terflies have the same orientation, either horizontal or vertical. As a consequence of th
touching lemma, we can now show that both orientations must occur.

Lemma 4.3 (Orthogonal butterflies):G-almost surely there exist both a horizontal infini
butterfly inpup and pdown as well as a vertical infinite butterfly inp left and p right .

Proof: Suppose there exists somemPexG having almost surely no vertical infinite butterfly
By the first step in the proof of the butterfly lemma, it then follows thatm5m+Rk,vert+T for all
kPZ, and thusm5m+qhor

22. By the tail triviality, m is in fact ergodic underqhor
2 ; cf. Proposition

~14.9! of Ref. 7. By the butterfly lemma, horizontal infinite butterflies do exist, say of color1.
We now use an argument similar to that in Corollary 3.2, with the line touching lemm

place of the Burton–Keane theorem. Fix anyn>1. ForkPZ let Ak denote the event that all spin
along the straight pathpk,n5((k,l ): l 52n,...,n) are11, ~k, n! belongs to an infinite1cluster in
pn,up5$xPZ2:x2>n%, and (k,2n) belongs to an infinite1cluster inpn,down5$x2<2n%. Let A
be the event thatAk occurs for infinitely manyk,0 and infinitely manyk.0. The finite energy
property then shows thatm(A0).0, and the horizontal ergodicity and Poincare´’s recurrence theo-
rem~or the ergodic theorem! imply thatm(A)51. But the line touching lemma guarantees that
infinitely many doubly infinite ‘‘vertical’’ 1paths passing through the horizontal axis are c
nected to each other inpn,up andpn,down. As n was arbitrary, it follows that almost surely eac
finite set is surrounded by a1circuit, and an infinite2cluster cannot exist. In view of Lemma 2.1
this implies thatm5m1. But m1 is not invariant underRvert+T, in contradiction to what we
derived form. h

The preceding argument can be used to derive the result of Russo3 that m1 andm2 are the
only phases which are periodic in one direction. We will not need this intermediate result.

V. NONCOEXISTENCE OF PHASES

In this section we will prove the following proposition.
Proposition 5.1 (Absence of nonperiodic phases): Any Gibbs measuremPG is invariant under

translations, i.e.,m5m+qhor
21 and m5m+qvert

21.
Together with Corollary 3.2 this will immediately imply the main theorem that each G

measure is a mixture of the two phasesm1 andm2. Our starting point is the following lemma
estimating the probability that a semi-infinite cluster can be pinned at a prescribed point.

Lemma 5.2 (Pinning lemma): LetmPG, and suppose thatm-almost surely there exists a
infinite 1*cluster Iup

1* in pup which meets the right semiaxis lright infinitely often. Then for each
finite squareD5@2n,n#2 and xP l right we have

m~x is 1* connected in~Dø l left!
c to I up

1* !>u/4

provided x lies sufficiently far to the right. The same holds when ‘‘left’’ and ‘‘right’’ or ‘‘up’’ an
‘‘down’’ are interchanged.

Proof: By hypothesis, the infinite component ofI up
1* \D almost surely contains infinitely man

points of l right . Thus, if xP l right is located far enough to the right then, with probability exce
0 Jun 2008 to 129.187.254.47. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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ing 1/2, at least one such point can be found left fromx, and another such point can be found rig
from x. This means thatx is surrounded by a1*semicircuits in pup which belongs toI up

1* and
satisfiesDùInt s5B.

Let L be a large square box containingx. If L is large enough, a semicircuits as above can
be found withinL with probability still larger than 1/2. We then can assume thats has the largest
interior among all such semicircuits inL. Using the strong Markov property and the point-t
semicircuit lemma we get the result. h

Our main task in the following is to analyze the situation when a half-plane contains bo
infinite 1cluster and an infinite2cluster.~The line-touching lemma still allows this possibility!
In this situation it is useful to consider contours.

As is usually done in the Ising model, we draw lines of unit length between adjacent sp
opposite sign. We then obtain a system of polygonal curves running through the sites of th

lattice Z21( 1
2,

1
2). A contour g in the upper half-planepup is a part of these polygonal curve

which separates a2cluster inpup from a 1*cluster inpup. This corresponds to the conventio
that at crossing points the contours are supposed to bend around the2spins. ~The artificial
asymmetry between1 and2 does not matter, and we could clearly make the opposite con
tion.! On its two sides,g is accompanied by a1*quasipathf g

1 and a2quasipathf g
2 which will

be called, respectively, the1 and2face ofg; the prefix ‘‘quasi’’ indicates that the faces are n
necessarily self-avoiding but may contain loops.

Lemma 5.3 (Semi-infinite contours):G-almost surely on Eup
1* ùEup

2 there exists a unique
semi-infinite contourgup in pup. gup starts between two points of the horizontal axis lhor and
intersects each horizontal line inpup only finitely often.

Proof: Let I up
1* be the unique infinite1*cluster inpup, andI up

2 the unique infinite2cluster in
pup. For definiteness we assume thatI up

1* meetsl right infinitely often, andI up
2 meetsl left infinitely

often. Letx be the rightmost point ofI up
2 ù l hor andgup the contour inpup starting from the line

segment separatingx andy5x1(1,0). SinceI up
2 contains an infinite2path starting fromx which

cannot be traversed bygup,gup cannot return tol hor on the left-hand side ofx. But gup can also not
return to l hor on the right-hand side ofy, since otherwise the2face of gup would establish a
2connection inI up

2 from x to a point ofl hor to the right ofy, in contradiction to the choice ofx.
Hencegup can never end and must therefore be infinite.

Let g be any infinite contour inpup. Then the infinite2face f g
2 must belong toI up

2 , by the
uniqueness of the infinite2cluster. This implies thatf g

2 must lie on the ‘‘left-hand side’’ ofgup.
Likewise, the1* face f g

1* must belong to the ‘‘side on the right’’ ofgup. Henceg5gup, proving
the uniqueness ofgup.

Finally, let l 5$x25n%, n>1, be a horizontal line inpup andp5$x2>n% the half-plane above
l. By the shift lemma and the above,p contains a unique semi-infinite contourg starting from the
line segment between two adjacent pointsu andv of l. u andv belong to the infinite faces ofg and
therefore toI up

1* and I up
2 , respectively. By the line touching lemma, this means thatu andv are

1*connected and2connected, respectively, to the axisl hor. The unique continuation ofg can
therefore visit only finitely many sites ofpup, and thus must reachl hor after finitely many steps;
this continuation is then equal togup, by the uniqueness of the latter. This shows thatgup visits the
line l only finitely often. h

From now on we consider a fixed external Gibbs measuremPexG. We want to prove thatm
is horizontally invariant.~The proof of vertical invariance is similar.! To this end we consider its
horizontal translatem̂5m+qhor

21, as well as the product measuren̂5m ^ m̂ on V3V. It is conve-
nient to think of the latter as a duplicated system consisting of two independent layers
following lemma is a slight variation of a result of Aizenman1 in his proof of the main theorem
our proof differs in part.

Lemma 5.4 (Fluctuations of the semi-infinite contour): Supposepup contains a semi-infinite
contourgup m-almost surely. Then forn̂-almost all(v,v̂)PV2, gup(v) andgup(v̂) intersect each
other infinitely often.

Proof: By tail triviality, we can assume thatgup has its1face on the left-hand side almos
surely; the alternative case is analogous. For anyn>1 we let
0 Jun 2008 to 129.187.254.47. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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an5max$kPZ: ~k,n!PI pn,up

1* %

be the abscissa of the point at whichgup enters definitely into the half-planepn,up5qvert
n pup above

the heightn. Consider the product measuren5m ^ m and the event

F5$~v,v8!PV2:gup~v! and gup~qhorv8! meet each other only finitely often%.

We need to show thatn(F)50.
Suppose thatF occurs. Thengup(v) lies strictly on one side ofgup(qhorv8) above some

random leveln. Hence we have eitheran(v).an(qhorv8) eventually, oran(v),an(qhorv8)
eventually. Using the abbreviationdn(v,v8)5an(v)2an(v8)5an(v)2an(qhorv8)11, we thus
see that

F,AøB[$dn>0 eventually%ø$dn<0 eventually%.

Suppose now thatn(F).0. Then, by symmetry,n(A)5n(B).0. By the tail triviality ofm, it
follows thatn(A)5n(B)51. This is becauseA, B are measurable with respect to the ‘‘produc
tail’’ T(2)5ù$FLc^ FLc:L,Z2 finite% in V2, which is trivial by Fubini’s theorem.~One should
not be mistaken to believe thatA was measurable with respect to the smaller ‘‘tail-product’’T
^ T. It is only the case that thev-sectionAv of A belongs toT for any v, and the functionv
→m(Av) is T-measurable.! We thus conclude thatv(AùB)51, meaning thatdn50 eventually,
almost surely. The lemma will therefore be proved once we have shown that this is impos

To this end we claim first thatn(dn>1)>dn(dn1150) for all n and some constantd.0. To
see this letAk,n5$(v,v8):an11(v)5an11(v8)5k%, Dk,n the two-point set consisting of th
points ~k,n! and (k11,n), andBk,n the event thatv5(11,11) on Dk,n andv85(11,21) on
Dk,n ; see the following diagram:

We then have

n~Bk,nuFD
k,n
c ^ FD

k,n
c !~v,v8!5mDk,n

v
^ mDk,n

v8 ~Bk,n!>@11e8b#24[d

and thus

n~$dn>1%ùAk,n!>n~n~Bk,nuFD
k,n
c ^ FD

k,n
c !1Ak,n

!>dn~Ak,n!

becauseAk,n is an event inDk,n
c . Summing overk we get the claim.

Now, if dn50 eventually almost surely then

inf lim
n→`

n~dn>1!>d lim inf
n→`

n~dn1150!5d,

so that with positive probability we have simultaneouslydn>1 infinitely often anddn50 even-
tually. Since this is impossible, we conclude thatn(F)50. h

The following percolation result for the duplicated system with distributionn̂ was already a
cornerstone of Aizenman’s argument.1 We prove it here differently, avoiding his use of the fa
that the limiting Gibbs measure for the6boundary condition is translation invariant. We will sa
that a path inZ2 is a <path for a pair (v,v̂)PV2 if v(x)<v̂(x) for all its sitesx. In the same
way we define<*paths, and we can speak of<*circuits and<*clusters.
0 Jun 2008 to 129.187.254.47. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Lemma 5.5 (No (1, 2)percolation in the duplicated system):n̂-almost surely each finite
squareD5@2n,n#2 is surrounded by a<*circuit in Z2.

Proof: Consider any two pointsxP l left andyP l right . We claim that withn̂-probability at least
(u/4)2 there exists a<*path fromx to y ‘‘above’’ D, providedx andy are located sufficiently far
to the left and to the right, respectively. We distinguish three cases.

Case 1:m(Eup
1 )50. By Lemma 4.3,pup then almost surely contains an infinite-clusterI up

2 ,
and each finite subset ofpup is surrounded by a2*semicircuit inpup. In other words, an infinite
2*clusterI up

2* in pup exists and touches bothl left and l right infinitely often. By the pinning lemma
and the positive correlations ofm, with m-probability at least (u/4)2 bothx andy are2*connected
to I up

2* outsideD, and therefore also2*connected to each other by a2*pathp aboveD. However,
this 2*pathp on the first layer is certainly also a<*path for the duplicated system, and the cla
follows.

Case 2:m(Eup
2 )50. In this case we also havem̂(Eup

2 )50. Interchanging1 and2 and replac-
ing m by m̂ in Case 1, we find that withm̂-probability at least (u/4)2, there exists a1*path p̂ in
the second layer aboveD from x to y. Sincep̂ is again a<*path for the duplicated system, th
claim follows as in the first case.

Case 3:m(Eup
1 )5m(Eup

2 )51. Thenm-almost surely there exists a unique semi-infinite cont
gup, and by tail triviality we can assume~for definiteness! thatgup has its1face on the left-hand
sidem-almost surely, and thus alsom̂-almost surely. By the pinning lemma and the independe
of the two layers, the following event hasn̂-probability of at least (u/4)2:

~1! In the first layer,y is 2*connected offD to I up
2 (v), and thus to the2face f up

2 (v) of gup(v);
that is, there exists an infinite2*path py

2(v) from y outsideD eventually running along
gup(v).

~2! In the second layer,x is 1*connected offD to I up
1* (v̂), and thus to the1face f up

1 (v̂) of
gup(v̂); that is, there exists an infinite1*path px

1(v̂) from x outsideD eventually running
alonggup(v̂).

Sincegup(v) andgup(v̂) intersect each other infinitely often by Lemma 5.4, the union ofpy
2(v)

and px
1(v̂) contains a*path fromx to y which by construction is a<*path for the duplicated

system. This proves the claim in the final case.
To conclude the proof of the lemma, we letAx,y denote the event that there exists a<*path

from x to y aboveD, andBx,y the event that such a path exists belowD. The indicator functions
of these events can be written as increasing functionsf and g respectively of the difference
configurationv̂2v. Using the positive correlations ofv̂ andm we thus obtain

n̂~Ax,yùBx,y!5E m~dv!E m̂~dv̂ ! f ~v̂2v!g~v̂2v!

>E m~dv!m̂~ f ~•2v!!m̂~g~•2v!!

>n̂~Ax,y!n̂~Bx,y!>~u/4!4.

The last inequality follows from the claim and its analog for the lower half-plane. Howe
if Ax,yùBx,y occurs thenD is surrounded by a<*circuit for the duplicated system. LettingD↑Z2

we see that with probability at least (u/4)4 each finite set is surrounded by a<*circuit. Since this
event is measurable with respect to the product-tailT (2) on which n̂ is trivial, the lemma fol-
lows. h

It is now easy to complete the proof of Proposition 5.1 as in Ref. 1.
Proof of Proposition 5.1:Consider any squareD5@2n,n#2, and lete.0. By Lemma 5.5,D

is n̂-almost surely surrounded by a<*circuit, and with probability at least 12e such a<*circuit
can be found in a sufficiently large squareL. Let G be the interior of the largest such<*circuit;
0 Jun 2008 to 129.187.254.47. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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if no such<*circuit exists letG5B. Then we find for any increasingFD-measurable function
0< f <1, using the strong Markov property ofn̂ and the fact thatmG

vdmG
v̂ whenG(v,v8)ÞB,

m~ f !5 n̂~ f ^ 1!

<E
$GÞB%

dn̂~v,v8!mG~v,v8!

v
~ f !1e

<E dn̂~v,v8!mG~v,v8!

v8 ~ f !1e

5 n̂~1^ f !1e

5m̂~ f !1e.

Letting e→0 andD↑Z2 we find thatmdm̂. Interchangingm and m̂ ~i.e., the roles of the layers!
we get the reverse relation. Hencem5m̂, so thatm is horizontally invariant. The vertical invari
ance follows similarly by an interchange of coordinates.

VI. EXTENSIONS

Which properties of the square latticeZ2 entered into the preceding arguments? The o
essential feature was its invariance under the reflections in all horizontal and vertical line
integer coordinates. We claim that the theorem remains true for the Ising model on any con
graph L with these properties.~The Ising model on the triangular and hexagonal lattices
already been treated in Ref. 10.!

To be more precise, letR5$Rk,hor,Rk,vert:kPZ% denote the set of all reflections of th
Euclidean planeR2 in horizontal or vertical lines with integer coordinates, and supposeL is a
locally finite subset ofR2 which ~after suitable scaling and rotation! is R-invariant for all R
PR. Such anL is uniquely determined by its finite intersection with the unit cube@0,1#2, and it
is periodic with period 2. Suppose further thatL is equipped with a symmetric neighbor relatio
‘‘ ;’’ satisfying

~L1! eachxPL has only finitely many ‘‘neighbors’’yPL satisfyingx;y;
~L2! x;y if and only if Rx;Ry for all RPR;
~L3! ~L,;! is a connected graph.

If x;y we say thatx and y are connected by an edge, which is visualized by the straight
segment betweenx andy. The preceding assumptions simply mean that~L,;! is a locally finite
connected graph admitting the reflectionsRPR, and thereby the translationsqx ,xP2Z2, as
graph automorphisms. The fundamental further assumption is

~L4! ~L,;! is planar, i.e., the edges inR2 between different pairs of neighboring points ha
only end points in common.

The complement~in R2! of the union of all edges then splits into connected compone
called the faces of~L,;!.

As will be explained in more detail in the Appendix, the properties~L1! to ~L4! are sufficient
for all geometric arguments above. Some particular examples are as follows.

~1! The triangular lattice T. This is the R-invariant lattice satisfyingTù@0,1#2

5$(1,0),(0,1)% and (21,0);(1,0);(0,1);(2,1); the remaining edges result from~L2!.

~2! The hexagonal orhoneycomb latticeH. Here, for example,Hù@0,1#25$( 1
3,1),(2

3,0)% and

(2 1
3,1);( 1

3,1);( 2
3,0);( 4

3,0); all other edges are again determined by~L2!.
~3! The diced lattice. This is obtained from the honeycomb lattice by placing points in

centers of the hexagonal faces and connecting them to the three points in the west, northe
southeast of these faces; to obtain reflection symmetry an additional shift by~21

3,0! is necessary.
See p. 16 of Ref. 11 for more details.

~4! The covering lattice of the honeycomb lattice, theKagomélattice, cf. p. 37 of Ref. 11.
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As for the interaction, it is neither necessary that all adjacent spins interact in the same
nor that the interaction is invariant under the spin flip. Except for attractivity, we need onl
invariance undersimultaneousflip-reflections~which in particular implies periodicity with period
2!. As a result, we can consider any system of spinsv(x)561 with formal Hamiltonian of the
form

H~v!5(
x;y

Ux,y~v~x!,v~y!!1 (
xPL

Vx~v~x!!, ~3!

where for alla,bP$21,1% we haveUx,y(a,b)5Uy,x(b,a) and

~H1! Ux,y(1,•)2Ux,y(21,•) is decreasing on$21, 1%;
~H2! Ux,y(a,b)5URx,Ry(2a,2b) andVx(a)5VRx(2a) for all RPR.

Assumption~H1! implies that the FKG inequality is applicable, and~H2! expresses the invarianc
under simultaneous spatial reflection and spin flip. We thus obtain the following general re

Theorem 6.1: Consider a planar graph~L,;! as above and an interaction of the form (3
satisfying (H1) and (H2). Then there exist no more than two extremal Gibbs measures.

The standard case, of course, is the ferromagnetic Ising model without external field
corresponds to the choiceUx,y(a,b)52bab andVx[0.

But there is also another case of particular interest. ConsiderL5Z21( 1
2,

1
2), the shifted square

lattice with its usual graph structure.L is bipartite, in the sense thatL splits into two disjoint
sublattices,Leven and Lodd, such that all edges run from one sublattice to the other. If we
Ux,y(a,b)52bab and define a staggered external field

Vx~a!5H 2ha if xPLeven

ha if xPLodd

with hPR then the conditions~H1! and ~H2! hold; here we take advantage of the fact that
reflectionsRPR map Leven into Lodd and vice versa. But it is well-known that this model
isomorphic to theantiferromagnetic Ising model onZ2 with homogeneous external fieldh; the
isomorphism consists in flipping all spins inLodd. This gives us the following result.

Corollary 6.2: For the Ising antiferromagnet onZ2 for any inverse temperature and arbitrar
external field there exist at most two extremal Gibbs measures.

This corollary does not extend to nonbipartite lattice such as the triangular lattice. In fac
the Ising antiferromagnet onT one expects the existence of three different phases for suitabh.

Another repulsive model to which our arguments can be applied is the hard-core lattice g
Z2, which is also known as the hard square model. In this model, the values21 and 1 are
interpreted as the absence and presence of a particle, respectively, and no particles are al
sit on adjacent sites. Its Hamiltonian is of the form~3! with

Ux,y~a,b!5H ` if a5b51

0 otherwise,

Vx~a!5H 2 logl if a51

0 otherwise.

The parameterl.0 is called the activity. Interchanging the values61 on Lodd we obtain an
isomorphic attractive model to which our techniques can be applied, although the interaction
the value1` so that the finite energy condition does not hold as it stands. However, there ar
enough admissible configurations to satisfy all needs of the Burton–Keane theorem and ou
applications of the finite energy property; more details will be provided in the Appendix.
therefore can state the following theorem.

Theorem 6.3:For the hard-core lattice gas onZ2 at any activityl.0 there exist at most two
extremal Gibbs measures.
0 Jun 2008 to 129.187.254.47. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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APPENDIX

Here we explain in more detail how our arguments can be extended to obtain Theorem
and 6.3.

Comments on the proof of Theorem 6.1:~1! *Connections and contours. A basic consequence

of the planarity assumption~L4! is that ~L,;! admits a conjugate matching graph~L,;* ). As
indicated by the notation, this conjugate graph has the same set of vertices, but the relax

;
* y holds if eitherx;y or x andy are distinct points~on the border! of the same face of~L,;!.
~Note that this matching dual is in general not planar. An interesting exception is the trian

lattice T, which is self-matching.! The edges of~L,;* ) are then used to define the concept
*connectedness. The construction implies that every path in~L,;! is also a*path ~i.e., a path in

~L,;* ), and that the outer boundary of any cluster is a*path, and vice versa.~The latter property
holds for arbitrary matching pairs of graphs as defined in Kesten,11 for example. However, we also
used repeatedly the former property which does not extend to general matching pairs. In par
this means that our results do not apply to the Ising model on the matching conjugate ofZ2 having
nearest-neighbor interactionsand diagonal interactions.!

Another consequence of planarity is that we can draw contours separating clusters
*clusters. Such contours can either be visualized by broken lines passing through the ed
~L,;!, or simply as a pair consisting of a quasipath and an adjacent*quasipath, namely the two
faces of the contour.

~2! Half-planes and boundary lines. A half-planep in L is still defined as the intersection o
L with a set of the form$xPR2:xi>k%,kPZ,i P$1,2%, or with < instead of>. However, the
‘‘boundary line’’ l is now in general not a straight line but rather the setl 5$xPp:
x;y for somey¹p%5](pc). In particular, l is not necessarily a line of fixed points for th
reflectionRPR mappingp onto its conjugate half planep8. Rather, for eachxP l we have either
Rx5x or Rx;x. For example, forL5T, the triangular lattice,pup and pdown have a common
straight boundary line, but the boundaries ofp right and p left are not straight; besides a commo
part on the vertical axis they also contain the adjacent points (1,k) and (21,k), kP2Z, respec-
tively. For the honeycomb latticeH, pup andpdown have again a common straight boundary lin
but p right andp left have no common points.

Nevertheless, it is easy to see that Lemma 2.3~and thus also Lemma 5.2! are still valid, and
these are the only results in which fixed points of reflections show up. In all other places on
only to observe that the axesl hor andl vert get a different meaning according to which half-space
considered; so one has to distinguish between an ‘‘upper’’ horizontal axisl hor,up~being the bound-
ary ‘‘line’’ of pup! and a ‘‘lower’’ horizontal axisl hor,down, and similarly betweenl vert,left and
l vert,right.

~3! Construction of connections and paths. At various places we needed to establish p
scribed connections or to construct specific paths. For example, the key idea of Lemma 3.4
extend2*semicircuits inp̃ to the boundary line ofp. In the present setup, this will in gener
require a finite2path rather than a single2spin, so that one has to adapt the definition ofAn

accordingly. In view of~L3! this is obviously possible, and one will only end up with a high
power ofd. Similarly, the2semicircuits in the proof of Lemma 4.2 has in general to be redefin
using the geometry ofL, and the same is the case for the points~k, 0! in the definition ofAk in the
proof of Corollary 3.2, the pathspk,n in the proof of Lemma 4.3, and the setsDk,n in the proof of
Lemma 5.4; see also comment~5!.

~4! Flip-reflection invariance. In the standard Ising model onZ2 it is true that the phasesm1

andm2 are invariant under allRPR and related to each other by the spin flipT. However, we did
not make use of this fact, cf. the comments after Corollary 3.3. We only needed thatm15
m2+T for all RPR ~implying thatm1 andm2 are periodic, and that any flip-reflection invaria
m is different from these phases; the latter was used in Lemmas 3.1 and 4.3!. This, however,
already holds whenever the interaction is only invariant under simultaneous flip-reflection
stated in assumption~H2!. This property is also sufficient for flip-reflection domination and t
0 Jun 2008 to 129.187.254.47. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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point-to-semicircuit lemma, as their proofs only use the composed mappingR+T for RPR.
~5! Translations. Since the lattice and the interaction are in general only preserved by

translation subgroupqx , xP2Z2, we have to confine ourselves to this class of translations.
did this already in the proof of the butterfly lemma and its Corollary 3.2, and we can obvious
so in the proof of Lemma 4.2. The only statements needing discussion are Proposition 5
Lemma 5.4. The former now only asserts that each Gibbs measure is periodic with per
Accordingly, in Lemma 5.4 and below we have to replaceqhor by qhor

2 . In addition, the minimal
distance between distinct lattice points can be less than 1, and the origin does not nece
belong toL. So,an has to be defined as the abscissa of the rightmost point in the boundar
of pn,up which belongs toI pn,up

1* , and dn(v,v8)5an(v)2an(v8)5an(v)2an(qhor
2 v8)12. In

general, we then have only the inclusion

F,$dn.22 eventually%ø$dn,2 eventually%,

and we need to derive a contradiction from the assumption thatudnu,2 eventually almost surely
This means that we have to prescribe the configurations for the two layers on larger sets thDk,n

~depending onn and bothan(v) and an(v8)! to obtain the inequalityn(udnu>2)>dn(udn11

u,2) for somed.0. While this is tedious to write down in full generality, it should be clear h
it can be done.

Comments on the proof of Theorem 6.3:Just as in the case of the Ising antiferromagnet,

replaceZ2 by its translateL5Z21( 1
2,

1
2). So we make sure that all reflectionsRPR mapLeven

into Lodd and vice versa. Nevertheless, below it will be convenient to ignore the shift by~1
2,

1
2! and

to characterize the lattice points by integer coordinates. Performing a spin flip onLodd we obtain
an isomorphic model which is defined by setting

Ux,y~a,b!5H ` if a5e~x!,b5e~y!

0 otherwise,

Vx~a!5H 2 logl if a5e~x!

0 otherwise,

wheree(x)51 if xPLeven, ande(x)521 otherwise. This model satisfies both~H1! and ~H2!.
However, the finite energy condition is violated becauseUx,y takes the value1`. Let us see how
this obstacle can be overcome. The basic observation is that the ‘‘vacuum configuration’’2e can
occur in any finite region with positive probability.

~1! In the proof of the Burton–Keane theorem, the finite energy property is used to co
different 1clusters with positive probability. This is still possible because for any boxD, any x
PD, any finite number of pointsx1 ,...,xkP]D, and anyv with v(x1)5¯5v(xk)511 we
have

mD
v~x is 1connected tox1 ,...,xk!.0.

~2! A different use of the finite energy property is made in the proofs of Corollary 3.2
Lemma 4.3: the eventsAk there involve the existence of both1 and2paths. To adapt the proo
of Corollary 3.2 to the present case we redefineA0 as the event that a prescribed pointxPLodd

belongs to a two-sided infinite1path with its two halves staying inpup andpdown, respectively,
and a neighbor pointyPLeven belongs to an infinite2cluster; forkP2Z we setAk5qhor

2kA0 . A
1spin atx then does not interfere with a2spin aty. Therefore, ifD is a sufficiently large box and
u1 ,u2 ,u3P]D are three points belonging, respectively, to infinite1, 1, 2clusters meetingD, we
can find pathsp1 ,p2 in D from x to u1 resp.u2 and a pathp3 from y to u3 such thaty is the only
site of p3 which is adjacent top1øp2 . The configuration inD which is equal to11 on p1øp2 ,
21 on p3 , and2e otherwise then has positive conditional probability given the configuratio
Dc. This shows thatm(A0).0. The proof of Lemma 4.3 can be adapted in a similar manne
0 Jun 2008 to 129.187.254.47. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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~3! In Lemma 4.2 we used the finite energy property to make sure thatmn,2
1 (v[21 onp)

.0, where p5$0%3$2n11,...,0%. To obtain the same result here we simply setD
5pø]p\$x252n% and observe that

mD
v~v[21 on p,v[2e on D\p!.0

wheneverv(0,2n)521.
~4! Uniform lower bounds for conditional probabilities were used twice, in the proofs of

shift lemma and the contour fluctuation lemma. In the proof of Lemma 3.4, it is sufficien
replace the set$x,y% by D(x)øD(y), whereD(x)5$k21,k,k11%3$n21,n% when x5(k,n).
This is because forv(k,n11)521 we have the estimate

mD~x!
v ~v~x!521, v[2e on D~x!\$x%!>d[

l`1

~11l!6 .

More care is needed in the proof of Lemma 5.4 where we used a uniform estimate f
conditional probability ofBk,n given Ak,n . First, according to comment~5! on the proof of
Theorem 6.1 we have to specify the abscissasan(v),an(v8) by two parametersk,k8PZ with
uk2k8u<1. Note, however, that the point (an(v),n) necessarily belongs toLeven because other-
wisev5e at the adjacent points (an(v),n11) and (an(v)11,n11); but this is excluded by the
hard-core interaction. Therefore we have in factk5k8, and we can consider the eventsAk,n as
before. Next we redefineDk,n as the set$k21,...,k12%3$n21,n%, and Bk,n as the event tha
v(k,n)5v(k11,n)51 ~as before!, v8(k,n)5v8(k11,n)521 ~in variation of the former defi-
nition!, and anything else occurs at the remaining sites ofDk,n ~e.g., the vacuum configuratio
2e!. We then havedn>2 on Ak,nùBk,n , and for (v,v8)PAk,n we find

mDk,n

v
^ mDk,n

m8 ~Bk,n!>
l

~11l!8 [d

as above. We can thus argue as before.
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