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We reconsider the percolation approach of Russo, Aizenman, and Higuchi for
showing that there exist only two phases in the Ising model on the square lattice.
We give a fairly short alternative proof which is only based on stochastic monoto-

nicity and avoids the use of symmetry inequalities originally needed for some

background results. Our proof extends to the Ising model on other planar lattices
such as the triangular and honeycomb lattice. We can also treat the Ising antifer-
romagnet in a homogeneous field and the hard-core lattice gas mod&f.on
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I. INTRODUCTION

One of the fundamental results on the two-dimensional ferromagnetic Ising model is the
following theorem obtained independently in the late 1970s by Aizehraad Higucht on the
basis of the seminal work of Rus2o.

Theorem: For the ferromagnetic Ising model af? with no external field and inverse tem-
perature 8> ., there exist only two distinct extremal Gibbs measytésand u ™.

The basic technique initiated by Russo consists of an interplay of three features of the Ising
model:

(1) the strong Markov property for random sets defined by geometric conditions involving clus-
ters of constant spin,

(2) the symmetry of the interaction under spin-flip and lattice automorphisms, and

(3) the ferromagnetic character of the interaction which manifests itself in FKG order and positive
correlations.

These ingredients led to a detailed understanding of the geometric features of typical configu-
rations as described by the concepts of percolation theory. In addition to these tools, the authors of
Refs. 1-3 also needed the result that the limiting Gibbs measure-withundary condition is a
mixture of the two pure phases. This result of Messager and Miraclé-Batk been had been
obtained by quite different means, namely some correlation inequalities of symmetry type in the
spirit of Griffiths—Kelly—Sherman(GKS) and Lebowitz inequalities. While such symmetry in-
equalities are a beautiful and powerful tool, they are quite different in character from thenFortvi
Kasteleyn—Ginibré FKG) inequality and have their own restrictions. It is therefore natural to ask
whether Russo’s random cluster method is flexible enough to prove the theorem without recourse
to symmetry inequalities. On the one hand, this would allow one to extend the theorem to models
with less symmetries, while on the other hand one might gain a deeper understanding of possible
geometric features of typical configurations.

In this paper we propose such a purely geometric reasoning which is only based on the three
above-mentioned features and avoids the use of the symmetry inequalities of Messager and
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Miracle-Sole* Despite this reduction of tools we could simplify the proof by an efficient combi-
nation of known geometric arguments. These include:

(1) the Burton—Keane uniqueness theorem for infinite clusters,

(2) a version of Zhang's argument for the impossibility of simultaneous plus- and minus-
percolation inZ? (cf. Theorem 5.18 of Ref.)6

(3) Russo’s symmetry trick for simultaneous flipping of spins and reflection of the Iattioe,

(4) Aizenman’s idea of looking at contour intersections in a duplicated system.

We have tried to keep the paper reasonably self-contained, so that the reader will find a
complete proof of the theorem. As a payoff of the method we also obtain some generalizations. On
the one hand, the arguments carry over to the Ising model on other planar lattices such as the
triangular or the hexagonal lattice. On the other hand, in the case of the square lattice they also
cover the antiferromagnetic Ising model in an external field as well as the hard-core lattice gas
model.

II. SETUP AND BASIC FACTS

Although we assume that the reader is familiar with the definition of the Ising model, let us
start by recalling a number of fundamental facts and introducing some notations. We assume
throughout that the inverse temperatrexceeds the Onsager threshgld, and that there is no
external field,h=0. The main ingredients we need are as follows.

(1) The configuration spac€) ={— 1,1}22, which is equipped with the Boret-algebraF and
the local o-algebrasF, of events depending only on the spinsArC Z?2.

(2) The Gibbs distributions in finite regionsA C Z? with boundary conditionwe Q). These
enjoy theMarkov property which says thaj.; (A) for Ae F, depends only on the restriction of
o to the boundaryA ={x« A:|x—y|=1forsomeye A} of A, and thefinite energy property
which states thap{ (A)>0 whenZ#Ae Fy .

(3) The Gibbs measureg:. on (Q,F) which, by definition, satisfyu(-|Fjc)(w)=pu4 for
p-almost allw and any finiteA; we write G for the convex set of all Gibbs measures andje®r
the set of all extremal Gibbs measures.

(4) The strong Mz_irkov p_rgpert)of Gibbs measures, st_ating thﬂ:('|frc)(w):,u-i2(.w) for
u-almost alle whenT is any finiterandomsubset 0Z? which isdetermined from outsigén that
{I'=A} e Fyc for all finite A, and Frc is the o-algebra of all event# outsidel” in the sense that
AN{I'=A}e Fyc for all finite A. (Using the conventiongs= 6, and Fyc=F we can in fact
allow thatI” takes the valugZ.) For a proof one simply split§) into the disjoint setgI'=A} for
finite A.

(5) The stochastic monotonicityor FKG ordej of Gibbs distributions. Writingu< v when
w(f)<w(f) for all increasing localor, equivalently, all increasing bounded measurgabéel

functionsf on €2, we have,uj‘{<,uX' whenw<w', anduji<uy whenACA andw=+1 onA\A
(the opposite relation holds whes=—1 on A\A).

(6) The pure phasesu™,u” e G obtained as limits forA 122 of u% with o=+1 and —1,
respectively, their invariance under all graph automorphismg%fthe sandwich relation.™
<u=<u” for any otherueG, and the resulting extremality @f * and .

(7) The characterization of extremal Gibbs measures by thiality on the tail o-algebra
T=N{Fr:ACZ2finite}; the fact that extremal Gibbs measures hgusitive correlationsand
the extremal decompositiorepresenting any Gibbs measure as the barycenter of a mass distribu-
tion on exg.

A general account of Gibbs measures can be found in Ref. 7, and Ref. 6 contains an exposi-
tion of the Ising model and its properties related to stochastic monotonicity.

We will also use a class of transformations(fwhich preserve the Ising Hamiltonian, and
thereby the clas§ of Gibbs measures. These transformations are as follows.

(1) The spin-flip transformation Tw=(w(X)),cz2— (— ®(X))xc 72.
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(2) The translationsd,,x € Z2, which are defined by, w(y)=w(y—x) for ye Z?, and in
particular the horizontal and vertical shiftg,,,= ¥ 1,9y and 9ye= 9(0,1), respectively.
(3) Thereflectionsin lines| through lattice sites: For arlye Z we write

Ric hor: 223 X= (X1, X2) — (X1,2K—X) € Z?

for the reflection in the horizontal lingx,=k}, and similarly Ry e for the reflection in the
vertical line {x;=k}. Fork=0 we simply writeR,,;= Ro hor and Ryer= R vert- All these reflec-
tions act canonically of).

We will investigate the geometric behavior of typical configurationsati-planesof Z2.
These are sets of the form

m={x=(X1,Xp) € Z% Z%:x; =K}

with ke Z,i {1,2}, or with “=" replaced by “<.” The line |={xeZ2%x;=k} is called the
associatedoundary line In particular, we will consider the following

(1) The upper half-planer,,={x= (X ,X,) € Z?:X,=0}.

(2) The downwards half-plane go.,={x= (X1 ,X,) € Z%x,=<0}, and the analogously defined
right half-plane g, and left half-planeme;. We will also work with

(3) The left horizontal semiaxiker={X=(X1,X,) € Z?:x;<0xX,=0}, and

(4) the right semiaxis ign={X= (X1,X2) € Z%x;=0x,=0}.

In the rest of this section we state three fundamental results on percolation in the Ising model.
By the symmetry between the spin valuet and—1, these results also hold when the minus and
plus signs are interchanged. Similarly, all notations introduced with one sign will be used accord-
ingly for the opposite sign.

We first recall some basic concepts of percolation theory. A fipdéh is a sequence
=(X1,Xz,...,Xy) Of pairwise distinct lattice points such that, for ang{2,...k}, x;_; andx; are
nearest neighbor@.e., have Euclidean distance. The numbek is called thdengthof p, andx;
andx, are its starting and final point, respectively. A patfs called apath in a subset & Z? if
all x; belong toS We say thatp meets or touches i some x; is contained inS or a nearest
neighbor of a point irt. We will also speak of infinite pathx({,x,,...) anddoubly infinite paths
(..., X_1,X0,Xq,...) in theobvious sense. A patp is called acircuit if x; andx, are nearest
neighbors, and aemicircuitin a half-planer if it is contained in7 andx,; andx, belong to the
boundary line ofr. A regionCCZ? is calledconnectedf for any x,y e C there exists a path in
C from x to y. A clusterin a regionSC Z? is a maximal connected subs@tof S It is called
infinite if its cardinality is infinite. Infinite clusters will be denoted by the lettewith suitable
sub- and superscripts.

Given any configuratiom e (), we consider the s&" (w) ={xe Z% w(x)=+1} of + spins.

A path (respectively, circuit, semicircuit, clusiem S™(w) is called a+path (respectively,
+circuit, +semicircuit +clusten for », and two points, y are said to betconnectedf there
exists a+path fromx toy.

We also need to work with the conjugate graph structureZénfor which two points are
considered as neighbors if their Euclidean distance is eithen2,dre., if they are either nearest
neighbors or diagonal neighbors. This graph structure is indicated by a star and leads to the
concepts ofpaths,* circuits, * semicircuits,* connectedness clusters,+* paths, +*semicircuits,
and so on. Note that each pattaifortiori a*path, and each cluster is contained in sorokister.

The starting point of the random cluster method is the following result of Refs. 8 and 3. Let
E* denote the event that there exists an infiniteluster| ™ in Z2, and defineE~,E** E~*
analogously. Note th& " CE** andE~ CE™*. (Throughout this paper we will use the let&r
to denote events concerning the existence of infinite clugters.

Lemma 2.1 (Existence of infinite clusters):Ud&g is different fromu~, there exists with
positive probability an infinite+ cluster. That isu(E*)>0 whenu# u ™.

Proof: Suppose thai(E*)=0. Then any given squark is almost surely surrounded by a
—=*circuit, and with probability close to 1 such a circuit can already be found within a square
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ADA providedA is large enough. If this occurs, we [Etbe the largest random subset/ofvhich
is the interior of such a-*circuit. (The largest such set exists because the union of such sets is
again the interior of a—*circuit)) In the alternative case we sk€t=(. By maximality, I" is
determined from outside. The strong Markov property together with the stochastic monotonicity
ur <pu~ therefore impliegin the limit A1Z?) thatu=<u~ on F, . SinceA was arbitrary angl ™
is minimal we find thatu= ", and the lemma is proved. O

The next lemma is a variant of another result of RuSso.

Lemma 2.2 (Flip-reflection domination): Lete G and R be any reflection, and suppose that
for u-almost all v each finiteACZ? is surrounded by an R-invariantcircuit ¢ such thatw
=ReT(w) on ¢ Thenu> uoReT.

Proof: Another way of stating the assumption is that for any fiRtEvariantA and u-almost
all o there exists a finitdr-invariant random sel’(w) DA such thato=ReT(w) on JI'(w).
Given anye>0, we can thus find aR-invariantA so large that with probability at least-1e such
an R-invariant I'(w) exists within A. Since the union of any two sudfi(w)’s enjoys the same
properties, we can assume tlhdt) is chosen maximal irk; in the case when no sudiw) exists
we setl’(w)=. The maximality ofl” implies that the eventd”= G} are measurable with respect
to Fpg- FoOr any increasing-,-measurable functiohi=0 we thus get from the strong Markov

property
w(f)=p(p r(F)lreg)-
However, ifl'(w)# thenw=ReT(w) on dl'(w). By stochastic monotonicity, for suehwe have
1) (F)= s (F) = i (FoReT),

where the identity follows from th&-invariance ofl’ and theReT-invariance of the interaction.

Hence
w(f)=p(feRoTLir,gp) = u(foReT) — € fl.. .
The lemma thus follows by letting—0 andA1Z2. O
A third useful result of Russds the following. To state it we need to introduce two notations.
First, let

o=p*(0el™™)

be theu " -probability that the origin belongs to an infinitexcluster. Lemma 2.1 implies that
6>0. Second, for a half-plane with boundary lind and a*semicircuito in 7 we write Into for
the unique subset af? which is invariant under the reflectidR in | and satisfiesrN d(Int o)
=¢; we call Into the interior ofo.

Lemma 2.3 (Point-to-semicircuit lemma): Letbe some half-plane with boundary lingx
e l, and o a*semicircuit in7 with interior A =Int c[X. Let we () be such thato=+1 ono. Then

LA (X is in A++*connected too)= 6/2.

Proof: By stochastic monotonicity we can assume that—1 on JA\o. We then havew
=ReT(w) on dA, and thereforeuy > us°ReT. To exploit this relation we leB, , be the event
that there exists a*path inA from x to o,C, , the event thak is surrounded by a*circuit in
AU o which is ++*connected tar, andD, ,=B, ,UC, ,. Then

pA(DyeURT(Dy o)) =1. )

Indeed, suppose that(x)=+1, butB, , does not occur. Then the=*cluster containingk does
not meeto. Its outer boundary belongs to axcluster, which either toucheR(o) so that
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R-T(C, ,) occurs, or not—in which case we consider thecluster containing its outer boundary,
and so on. After finitely many steps we see that eitBgy, or ReT(C, ,) must occur(1) is an
immediate consequence. It follows thaf (D, ,)=1/2. Hence

/LX(BX,U) ZMX( BX,G" Cx,a)M(Dx,a) BMK(BX,A Cx,a)/z-

But if C, , occurs then there exists a largest randoml8etA containingx such thatsl” forms a
+=circuit and is+*connected tar. Writing B, ,r for the event thak is +*connected tall" and
using the strong Markov property we thus find that

IU’X(BX,(T|CX,O') = MX(MF(Bx,aF”CX,o); 0

becauseu;: (By,sr)= 6 by stochastic monotonicity. Together with the previous inequality this
gives the result. O

[ll. PERCOLATION IN HALF-PLANES

In this section we will prove that there exist plenty of infinite clusters of constant spin in the
half-planes ofZ2. In particular, this will show that all translation invarianie G are mixtures of
ut andu”. We will use two pearls of percolation theory, the Burton—Keane uniqueness theorem
for infinite clusters and Zhang’s argument for the nonexistence of two infinite clusters of opposite
sign inZ2. (In the present context, these two results were obtained first in Ref. 9

For a given half-planer we IetEj; denote the event that there exists an infiritduster inar.
When this occurs, we will Writd; for such an infinite+cluster in 7. (As we will see, such
clusters are unique, so that this notation does not lead to conflictthe case of the standard
half-planes, we will only keep the directional index and omit #hdor example, we WriteEJp for
E:u . Similar notations will be used fof * clusters and for the minus sign instead of the plus sign.

Let us say thats,#') is a pair ofconjugate half-plane# 7 and =’ share only a common
boundary line. An associated palri(,! :;,) or (I,,1_,) of infinite clusters of the same sign in
and 7’ will be called aninfinite butterfly (This name alludes to the assumption that the two
infinite “wings” have the same “color,” but is not meant to suggest that they are symmetric and
connected to each other, although the latter will turn out to be)tklfe. will say that a statement
holds G-almost surely if it holdsu-almost surely for allueg.

Lemma 3.1 (Butterfly lemmadi-almost surely there exists at least one infinite butterfly

Proof: Suppose the contrary. By the extremal decomposition theorem and the fact that the
existence of infinite butterflies is a tail measurable event, there is then genexg for which
there exists no infinite butterflyg-almost surely. We will show that this is impossible.

Step 1 First we observe that is RoT-invariant for all reflection®R= Ry po O Ry yert, and in
particular is periodic under translations. Indeed(tetr’) be conjugate half-planes with common
boundary lind andR the reflection in mappingw onto 7'. By the absence of infinite butterflies,
at least one of the half-planes and #' contains no infinite—cluster, and this or the other
half-plane contains no infinite-cluster. In view of the tail triviality ofu, we can assume that
n(E,)=0. This means that fo-almost all  every finite AC# is surrounded by some
+*semicircuit y in . For such ay,c=yUR(y) is an R-invariant =circuit that surrounds
AUR(A) and satisfiesws=R-T(w) onc. By Lemma 2.2, this gives the flip-reflection domination
w>=wueReT. Since alsou(Ef)=0 or M(E;,)ZO, we conclude in the same way that
w=<puoRoT, so thatu= u°ReT. Since bothdZ,, and 92, are compositions of two reflections, the
invariance under the translation groufl,j . »z2 follows.

Step 2 We now take advantage of the Burton—Keane uniqueness théastating that for
every periodicu with finite energy there exists at most one infinite(respectively,—) cluster,
and Zhang's symmetry argumefdf. Ref. 6, Theorem 5.1)8deducing from this uniqueness the
absence of simultaneous and —percolation.(In Ref. 5, the uniqueness of the infinite cluster is
only stated for translation invariapt, but the argument works in the same way by applying the
ergodic theorem to the subgroup,),.»z2. It is also not shown there that the finite energy
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property remains valid under ergodic decomposition. Although this follows from Thedrérm?
of Ref. 7 in the present setting, and a similar argument in general, we do not need this here
because oup is extremal, and therefored(),. ,z2-ergodic by Propositiori14.9 of Ref. 7).

We start noting that, by the flip-reflection symmetryafu is different fromu* andu ™, so
that by Lemma 2.1, the tail triviality of., and the Burton—Keane uniqueness theorem there exist
both a unique infinite+cluster | and a unique infinite—cluster |~ in the whole planez?
u-almost surely. We now choose a squate=[—n,n]?CZ? so large thatu(ANI*#J)>
1-2712 Let 9, A be the intersection oA with the kth quadrant, and led, be the increasing
event that there exists an infinitepath in A© starting from some site ia A. DefineA, analo-
gously. Since

4

{ANIT+T}C U A;
k=1

and u (as an extremal Gibbs measureas positive correlations, it follows that

4
N OMA;
k=1

4
I pcrAH=u su(ANIT=g)<2712
k=1

whence there exists sonke={1,...,4 such thatu(Q\A;)<2~3. For notational convenience we
assume thak=1. By the above-shown flip-reflection symmetry, we find that

w(ATNA; NASNA,)>1—4-273=1/2,

which is impossible because on this intersection the infinite clusterand|~ cannot be both
unigue. This contradiction concludes the proof of the lemma. O

The butterfly lemma leads immediately to the following result first obtained by Messager and
Miracle-Solé by means of correlation inequalities of symmetry type; the following proof ap-
peared first in Ref. 6.

Corollary 3.2 (Periodic Gibbs measures): Any periogdie G is a mixture ofu® and u ™.

Proof: Supposeu e is invariant under @) ,z2 for some periogp=1. Conditioningu on
any periodic tail evenkE we obtain again a periodic Gibbs measure. It is therefore sufficient to
show thatu(E* NE~)=0. Indeed, the butterfly lemma then shows théE*)+ w(E~)=1, and
Lemma 2.1 implies that(-|[E")=u" andu(-|E~)=pu~ whenever these conditional probabili-
ties are defined. Henge=uw(E")u"+ u(E )u .

Suppose by contraposition tha{E"NE~)>0. SinceE* NE™ is invariant and tail measur-
able, we can in fact assume tha(E " NE~)=1; otherwise we replacg by u(-|E*NE™). By
the butterfly lemma, there exists a péir,7’) of conjugate half-planes, say,, and gy, and a
sign, say+, such that both half-planes contain infinite clusters of this sign with positive probabil-
ity. Since u(E~)=1 by assumption, we can find a large squArsuch that with positive prob-
ability A meets infinite+clusters in, and o, and also an infinite-cluster. This—cluster
leavesA either on the left or on the right between the two infinitelusters. We can assume that
the latter occurs with positive probability. By the finite energy property, it then follows that also
1(Ag) >0, where fork e pZ we write A, for the event that the poink(0) belongs to a two-sided
infinite +path with its two halves staying iy, and g0, respectively, andk+ 1,0) belongs to
an infinite —cluster.

Let A be the event thaf, occurs for infinitely manyk<<0 and infinitely manyk>0. The
horizontal periodicity and Poincaserecurrence theoreificf. Lemma(18.15 of Ref. 7] then show
that u(Ag\A) =0, and thereforg.(A)>0. But onA there exist infinitely many-clusters which
are separated from each other by the infinitely many “verticalpaths. This contradicts the
Burton—Keane theorem. O
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The preceding argument actually shows th4E~* NE**)=0 wheneverueg is periodic.
Sinceu ™ (E*)=1 by Lemma 2.1 and tail triviality, this shows that in thghase therspins form
an infinite sea with only finite islands.

Corollary 3.3 (Plus-sea in the plus-phase).* (E~*)=0. Hence u"-almost surely there
exists a unique infinite-cluster I in Z2? which surrounds each finite set

We note that in contrast to Zhang's argumécft Theorem 5.18 of Ref.)6our proof of the
preceding corollary does not rely on the reflection invariancg 6fbut only on its periodicity,
and thus can be extended to the setting of Sec. VI.

We conclude this section with the observation that percolation in half-planes is not affected by
spatial shifts.

Lemma 3.4 (Shift lemma): Let and 7 be two half-planes such thatD 7, i.e., 7 and 7 are
translates of each other. Then E E;*T G-almost surely, and similarly with- instead of+.

Proof: Since trivially EZ DE= , we only need to show thé, CE: G-almost surely. For
definiteness we consider the case whena 7 ,,={x,=0} and7={x,=1}. Take anyu e exg,
and suppose tha;u(E,{)=O. Then for almost allo and anyn=1 there exists a smallest
—*semicircuito,(w) in 7 containingA ,U o,,_1(w) in its interior; hereA ,=[ —n,n]X[1,n] and
oo=. LetX,(w) € lie andy,(w) € l gy be the two points facing the two end pointsa@f();
these areFz-measurable functions ef, and the random se{s,,,y,} are pairwise disjoint. Lef,
be the event that the spinsygt andy,, take value—1.

We claim thatA, occurs for infinitely manyn with probability 1. Indeed, fix an\N=1, x
€ liert, Y € Liigne and letBy x y={Xn=X,yn=Y}N N = nA. Then we can write

AN By y) = il oy (0(X) = w(y) == 1)1g, )= u(Bysy)

becauseBy, x, only depends on the configuration outsidey}, and the one-point conditional
probabilities of u are bounded from below by=[1+¢€®] 1. Summing overx,y we obtain
(NN A< (1- %) u(Ny=nAS), and iteration givege(N =y AS)=0. LettingN— we get
the claim.

We now can conclude that with probability 1 each Hoxn,n]X[0,n] is surrounded by a
—*semicircuit in 7y, which means thap(EJp)=0. As ,LL(E;T) is either 0 or 1, the lemma
follows. O

IV. UNIQUENESS OF SEMI-INFINITE CLUSTERS

Our next subject is the uniqueness of infinite clusters in half-planes, together with the stronger
property that such clusters touch the boundary line infinitely often. This was already a key result
of Russa®

Lemma 4.1 (Line touching lemma): For any half-plamnehere existgj-almost surely at most
one infinite+ (respectively++) cluster I (respectively, I *) in 7. When it exists, this infinite
clusterg-almost surely intersects the boundary line loinfinitely often, in the sense that outside
any finiteA one can find an infinite path in this cluster starting from |

Just as Russo did, we derive this lemma from the absence of percolation fophiase in the
upper half-planemr,, with —boundary condition irn-rﬁp (which implies the uniqueness of the
semi-infinite Gibbs measure, by the argument of Lemma Rt for the latter we will give here
a different argument using stochastic domination by a translation invariant Gibbs measure and
Corollary 3.2. To state the result we write for the configuration which is-1 ony,and—1 on
7,p» and consider the semi-infinite limit

IU“LJJ:p: lim /‘Li 2
ATﬂ'up

which exists by stochastic monotonicity.
Lemma 4.2 (No percolation on a bordered half-plapg)(E ;") =0.

Downloaded 30 Jun 2008 to 129.187.254.47. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



1160 J. Math. Phys., Vol. 41, No. 3, March 2000 H.-O. Georgii and Y. Higuchi

Proof: To begin we note thaﬂjp is invariant under horizontal translations and stochastically
maximal in the set of all Gibbs measures o, with —boundary condition inT; up- This follows
just as in the case of the plus-phgsé on the whole lattice. In partlcula;uup is trivial on the

yptail Zy= N{F;, GA A Crypfinite}. We think of,uup as a probability measure dn for which

almost aII conflguratlons are identically equaltd on =, up-

Next we consider the downwards translaes =y Fyen» N=0. Evidently, Mo IS Ob-
tamed by an analogous infinite-volume limit in the half-plgg=—n}. This shows tha]un _
\,unﬂ, by stochastic monot0n|C|ty, so that the stochastically mcreasmg Ilmft
—|Imn_m,un _ exists. Clearlyu™ e G. Also, ™ inherits the horizontal invariance of tbuan and
is in addition vertically invariant. Corollary 3.2 therefore implies that=au ™~ +(1—a)u™ for
some coefficienae[0,1].

We claim thata>0. Forn=1 let B, denote the event that the origin isxconnected to the
horizontal I|ne{x2= —n}. By the f|n|te energy property and the horizontal ergodlcny,uqf, ,
there exist for,un _-almost all » some random integersen(w) <0<Myjgn(w) such thatw
=-—1 on

o(w)={xeZ%X; € {Mier( @), Myign( @)}, —N=<X,<0}.

Together with a segment of the lif&,=—n—1} on which w=— 1Mr{,-almost surely,o(w)
forms a —semicircuit in 4o, surrounding the origin. An immediate application of the strong
Markov property(applied to the largest suchin a large box and the point-to-semicircuit lemma
thus implies thatu,{,(Bn)>0/2. Therefore, writingg, , for the event that the origin belongs to
some—=* cluster of size at leash we find M:,—(EE,:E)B 0/2 whenn=m. Letting firstn—o and
thenm—o we see thap " (E~*)=6/2. Sincex™ (E"*)=0 by Corollary 3.3, it follows thaa
= 0/2, and the claim is proved.

To conclude the proof we observe that

pol Bt )<pu (ET*)=1-a<1,

again by Corollary 3.3. Smc;aup is trivial on 7, the lemma follows. O

We are now able to prove Lemma 4.1 along the lines of Réisso.

Proof of Lemma 4.1For definiteness we assume that=m,; other half-planes merely
correspond to a change of coordinates. We consider only infiniesters inw,,; the case of
+=*clusters is similar. It is also clear that any result proved for tiségn is also valid with the
—sign.

Uniqueness:The uniqueness of infinite-clusters inm,, is a consequence of the second
statement, the line-touching property for infinitexclusters. Indeed, suppose there exists no
infinite —*cluster inm,; then each finite set imr, is surrounded by & semicircuit, so that any
two infinite +paths are necessarilyyconnected to each other. In the alternative case when an
infinite —*clusterlljp* in m,, exists, thisIJp* meetslen Or lyign: infinitely often, so that each
infinite +cluster must meet the other half-line infinitely often. Hence, two sticlusters must
cross each other, and are thus identical.

Line touching:Let u € exg andx e 7, and consider the eveAt, thatx belongs to an infinite
+cluster inm, which does not touch the horizontal akjg,. We will show thatu (A, ) =0. Once
this is established, we can take the union ovexahd use the finite energy property to see that
for each finiteA the event “an infinite+cluster inm, is not connected th,,, outsideA” also has
probability zero, which means that almost surely any infiniteluster in 7, must meetl,,
infinitely often.

Intuitively, if A occurs then the infinitercluster containing is separated fronh,,, by an
infinite —*path; but the spins “above” this path feel only theboundary condition and thus
believe to be in the-phaseu ™, so that they will not form an infinite-cluster.

To make this intuition precise we fix some inteder1 and consider the everaﬁitxfk that x
belongs to at-cluster of size at least which does not medf,,. Take a boxA C m, containing
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x and so large that there exists no path of lenigtiiom x to A®. For w e A;, we consider the
largest sef’(w)CA contalnlngx such thatw=—1 on ﬁl“(w)\aupA WhereaupA AN, We
also consider the eveEl;( « thatx belongs to atcluster inr, of size at leask. Using the fact that
AX,k is contained in theF,-measurable evedt” exist§ NE, ,, we obtain by the strong Markov
property and the stochastic monotonicity of Gibbs distributions that

(AL <p(r(Ef)=mui(Exy,

where the* boundary condition is defined as (8). Now, taking first the limitAT 7, as in(2)
and then letting—  we find thatu (A, )<,uup(Eup) But the last expression vanishes by Lemma
4.2. O

The butterfly lemma and shift lemma together still leave the possibility that all infinite but-
terflies have the same orientation, either horizontal or vertical. As a consequence of the line
touching lemma, we can now show that both orientations must occur.

Lemma 4.3 (Orthogonal butterfliesyi-almost surely there exist both a horizontal infinite
butterfly inm, and 7y, as well as a vertical infinite butterfly imv e and 7 igp.

Proof: Suppose there exists some= exG having almost surely no vertical infinite butterfly.
By the first step in the proof of the butterfly lemma, it then follows tb.at,u Ry vere T for all
ke Z, and thusu= Moﬁhor By the tail triviality, u is in fact ergodic undet}hor, cf. Proposition
(14.9 of Ref. 7. By the butterfly lemma, horizontal infinite butterflies do exist, say of célor

We now use an argument similar to that in Corollary 3.2, with the line touching lemma in
place of the Burton—Keane theorem. Fix amy 1. Fork e Z let A, denote the event that all spins
along the straight patpy ,=((k,1):I=—n,...,n) are+1, (k, n) belongs to an infinitetcluster in
T, up= ={xeZ%x,=n}, and k,—n) belongs to an infiniter-cluster inr, goun={X><—n}. LetA
be the event thad\, occurs for infinitely manyk<<0 and infinitely manyk>0. The finite energy
property then shows that(Ag) >0, and the horizontal ergodicity and Poincanecurrence theo-
rem (or the ergodic theoremmply that «(A) = 1. But the line touching lemma guarantees that the
infinitely many doubly infinite “vertical” +paths passing through the horizontal axis are con-
nected to each other i, ,, and 7y, gown- AS N Was arbitrary, it follows that almost surely each
finite set is surrounded by -acircuit, and an infinite-cluster cannot exist. In view of Lemma 2.1,
this implies thatu=pu". But u™ is not invariant undeR,¢T, in contradiction to what we
derived foru. O

The preceding argument can be used to derive the result of Rtestq.™ and .~ are the
only phases which are periodic in one direction. We will not need this intermediate result.

V. NONCOEXISTENCE OF PHASES

In this section we will prove the following proposition.

Proposition 5.1 (Absence of nonperiodic phases): Any Gibbs measti¢eis invariant under
translations, i.e.yu= ue e and u= oV on.

Together with Corollary 3.2 this will immediately imply the main theorem that each Gibbs
measure is a mixture of the two phase$ and x~. Our starting point is the following lemma
estimating the probability that a semi-infinite cluster can be pinned at a prescribed point.

Lemma 5.2 (Pinning lemma): Leted, and suppose that-almost surely there exists an
infinite ++*cluster I** in 7, which meets the right semiaxigyl; infinitely often. Then for each
finite squareA =[ — n n]? and xe light We have

w(x is +*connected iN(AUI ) to 1} )>49/4

provided x lies sufficiently far to the right. The same holds when “left” and “right” or “up” and
“down” are interchanged

Proof: By hypothesis, the infinite component IQJ*L*\A almost surely contains infinitely many
points ofl gy Thus, ifx el gy is located far enough to the right then, with probability exceed-
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ing 1/2, at least one such point can be found left fogrand another such point can be found right
from x. This means that is surrounded by a-*semicircuito in m, which belongs td Jp* and
satisfiesANInto=J.

Let A be a large square box containirglf A is large enough, a semicircuit as above can
be found withinA with probability still larger than 1/2. We then can assume thhas the largest
interior among all such semicircuits ih. Using the strong Markov property and the point-to-
semicircuit lemma we get the result. O

Our main task in the following is to analyze the situation when a half-plane contains both an
infinite +cluster and an infinite-cluster.(The line-touching lemma still allows this possibility.
In this situation it is useful to consider contours.

As is usually done in the Ising model, we draw lines of unit length between adjacent spins of
opposite sign. We then obtain a system of polygonal curves running through the sites of the dual

lattice Z%+ (%, 3). A contour vy in the upper half-planer,, is a part of these polygonal curves
which separates acluster in,, from a +=*cluster inm,. This corresponds to the convention
that at crossing points the contours are supposed to bend aroundsghias. (The artificial
asymmetry betweert and — does not matter, and we could clearly make the opposite conven-
tion.) On its two sides;y is accompanied by &*quasipathf; and a—quasipathf, which will

be called, respectively, thé and —face of y; the prefix “quasi” indicates that the faces are not
necessarily self-avoiding but may contain loops.

Lemma 5.3 (Semi-infinite contoursy-almost surely on Ep*ﬂEJp there exists a unique
semi-infinite contoury,, in m,. v, starts between two points of the horizontal axjs and
intersects each horizontal line i, only finitely often

Proof: Let | Jp* be the unique infinite-*cluster inm,, andl , the unique infinite-cluster in
myp- FoOr definiteness we assume tlhaf meetsl g, infinitely often, andl ,, meetsl ¢ infinitely
often. Letx be the rightmost point of N, and vy, the contour inm, starting from the line
segment separatingandy=x+(1,0). Sincel,, contains an infinite-path starting fronx which
cannot be traversed by, y,, cannot return td,, on the left-hand side of. But y,, can also not
return tolp, on the right-hand side of, since otherwise the-face of y,, would establish a
—connection inl,, from x to a point ofl,, to the right ofy, in contradiction to the choice of
Hencey,, can never end and must therefore be infinite.

Let y be any infinite contour inr,. Then the infinite—face f, must belong td ,;, by the
uniqueness of the infinite-cluster. This implies that, must lie on the “left-hand side” ofy,,.
Likewise, the+*facef;’* must belong to the “side on the right” of,,,. Hencey= y,,, proving
the uniqueness of,.

Finally, letl={x,=n}, n=1, be a horizontal line inr,, and7={x,=n} the half-plane above
|. By the shift lemma and the above,contains a unique semi-infinite contouistarting from the
line segment between two adjacent poimemdv of . uandv belong to the infinite faces of and
therefore tol jp* andl,, respectively. By the line touching lemma, this means thabhdv are
++*connected and-connected, respectively, to the axjg,. The unique continuation of can
therefore visit only finitely many sites af,,, and thus must readh,, after finitely many steps;
this continuation is then equal tg,,, by the uniqueness of the latter. This shows thatvisits the
line | only finitely often. O

From now on we consider a fixed external Gibbs meagireexG. We want to prove that
is horizontally invariant(The proof of vertical invariance is similarTo this end we consider its
horizontal translatel=uof},jolr, as well as the product meastuire: u® . on QXQ. It is conve-
nient to think of the latter as a duplicated system consisting of two independent layers. The
following lemma is a slight variation of a result of Aizenntan his proof of the main theorem:;
our proof differs in part.

Lemma 5.4 (Fluctuations of the semi-infinite contour): Suppaggecontains a semi-infinite
contoury,, u-almost surely. Then far-almost all(w,®) € 02, Yupl@) and y,(®) intersect each
other infinitely often

Proof: By tall triviality, we can assume thag,, has its+face on the left-hand side almost
surely; the alternative case is analogous. For @yl we let
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a,=maxkeZ:(k,n)el ,tn*up}

be the abscissa of the point at whigl, enters definitely into the half-plane, ,,= ﬁcenﬂup above
the heightn. Consider the product measures u® n and the event

F={(w,w’)e(22:yup(w) and yu( Onow’) meet each other only finitely oftgn

We need to show that(F)=0.

Suppose thakF occurs. Theny(w) lies strictly on one side ofy,(Jn,@') above some
random leveln. Hence we have eithes,(w)>a,(Inhow’) eventually, ora,(w)<a,(hew')
eventually. Using the abbreviatiah(w,»’)=a,(w) —a,(o')=a,(w) —a,(Thew') + 1, we thus
see that

FCAUB={d,=0 eventuallyu{d,<0 eventually.

Suppose now that(F)>0. Then, by symmetryy(A) = v(B)>0. By the tail triviality of », it
follows thatv(A)=v(B)=1. This is becaus@, B are measurable with respect to the “product-
tail” 7= N{F,c® Fyc: ACZ?finite} in Q2, which is trivial by Fubini’s theorem(One should
not be mistaken to believe that was measurable with respect to the smaller “tail-produgt”
®7. It is only the case that the-sectionA, of A belongs to7 for any w, and the functionw
—u(A,) is 7-measurable.We thus conclude that(ANB) =1, meaning thatl,,=0 eventually,
almost surely. The lemma will therefore be proved once we have shown that this is impossible.

To this end we claim first that(d,=1)= év(d,, ;=0) for all n and some consta@>0. To
see this letA, ,.={(w,»"):ay+1(w)=a,:1(0") =k}, Ay, the two-point set consisting of the
points (k,n) and k+1,n), andB, , the event thaw=(+1,+1) onA,, andw'=(+1,—1) on
Ay n; see the following diagram:

First layer Second layer
n+l + - + -
n + + + 1 -

k k+1 k k+1

We then have
v(Bial Fag ® Fae J(w,0)=ug, @uk, (Bio)=[1+e¥] =6
and thus
v({dn=1}NA n)=v(¥( Bk,n|]:AE’n® Fag V1a, )= 0v(Agn)

becauseé?, , is an event iMy . Summing ovek we get the claim.
Now, if d,=0 eventually almost surely then

inf lim »(d,=1)=&liminf v(d,,,=0)=4,

nN—ox n—oe

so that with positive probability we have simultaneougdfy=1 infinitely often andd,,=0 even-
tually. Since this is impossible, we conclude thdF)=0. O

The following percolation result for the duplicated system with distributioras already a
cornerstone of Aizenman’s arguméniVe prove it here differently, avoiding his use of the fact
that the limiting Gibbs measure for theboundary condition is translation invariant. We will say
that a path irnz? is a <path for a pair f,) € Q? if w(x)<a(x) for all its sitesx. In the same
way we defines*paths, and we can speak sfcircuits and<*clusters.
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Lemma 5.5 (No €, —)percolation in the duplicated system}-almost surely each finite
squareA=[—n,n]? is surrounded by a=*circuit in Z2.

Proof: Consider any two pointge |, andy € | g, We claim that withi-probability at least
(014)? there exists as*path fromx to y “above” A, providedx andy are located sufficiently far
to the left and to the right, respectively. We distinguish three cases.

Case 1:,u(EJp)=0. By Lemma 4.3.m,, then almost surely contains an infinite-clustgy,
and each finite subset af,, is surrounded by a*semicircuit in,. In other words, an infinite
—*clusterl )" in m, exists and touches botl; andl gy infinitely often. By the pinning lemma
and the positive correlations pf, with u-probability at least /4)? bothx andy are —*connected
to IJp* outsideA, and therefore alse*connected to each other by-a pathp aboveA. However,
this —=pathp on the first layer is certainly alsosa*path for the duplicated system, and the claim
follows.

Case 2:u(E,) =0. In this case we also haye(E, ) =0. Interchangingt and — and replac-
ing u by 2 in Case 1, we find that witli-probability at least §/4)?, there exists a+*pathp in
the second layer abouk from x to y. Sincep is again a<xpath for the duplicated system, the
claim follows as in the first case.

Case 3:,u(Ejp) = n(E,p =1. Thenu-almost surely there exists a unique semi-infinite contour
Yup» @nd by tail triviality we can assumor definitenespthat y,, has its+face on the left-hand
side u-almost surely, and thus algo-almost surely. By the pinning lemma and the independence
of the two layers, the following event hasprobability of at least §/4)?:

(1) Inthe first layery is —*connected offA to | ,,(w), and thus to the-facef,(w) of y,®);
that is, there exists an infinite-*path p, (») from y outsideA eventually running along
7up(“’)-

(2) In the second layerx is +*connected offA to I |F (@), and thus to thetface fjp(&)) of

p
Yup(®); that is, there exists an infinité * path p, (@) from x outsideA eventually running

along y, ().

Sincey,(w) andy, (@) intersect each other infinitely often by Lemma 5.4, the uniop ofw)
and p, (@) contains arpath fromx to y which by construction is as*path for the duplicated
system. This proves the claim in the final case.

To conclude the proof of the lemma, we K , denote the event that there existssapath
from x to y aboveA, andB, , the event that such a path exists belawThe indicator functions
of these events can be written as increasing functioasd g respectively of the difference
configurationw— w. Using the positive correlations @ and x we thus obtain

f/(Ax,yﬂBx,y)=J ,u(dw)J' p(do)f(o—w)g(o— o)

zf pu(dw)a(f(-—w)a(g(- —w))

=D(Agy) (Byy) = (014

The last inequality follows from the claim and its analog for the lower half-plane. However,
if Ay yN By y occurs then is surrounded by &= circuit for the duplicated system. Letting Z2
we see that with probability at leas#/@)* each finite set is surrounded by circuit. Since this
event is measurable with respect to the productZ&# on which ¥ is trivial, the lemma fol-
lows. O

It is now easy to complete the proof of Proposition 5.1 as in Ref. 1.

Proof of Proposition 5.1Consider any squar&=[ —n,n]?, and lete>0. By Lemma 5.5A
is v-almost surely surrounded by=axcircuit, and with probability at least-1 e such as*circuit
can be found in a sufficiently large squake Let I" be the interior of the largest suek*circuit;
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if no such=<xcircuit exists letl'=J. Then we find for any increasing,-measurable function
0=<f=<1, using the strong Markov property #fand the fact thapp < ur whenl'(w,0")#J,

w(f)=v(fel)

SJ dﬂ(w,w’)u?(u}w,)(f)+e
{T+J} '

sf A, 0 ), o (F)+e

D(leof)+e
=i(f)+e.

Letting e—0 andA1Z2 we find thatu< . Interchangingu and it (i.e., the roles of the layers
we get the reverse relation. Henge= i, so thatw is horizontally invariant. The vertical invari-
ance follows similarly by an interchange of coordinates.

VI. EXTENSIONS

Which properties of the square latti& entered into the preceding arguments? The only
essential feature was its invariance under the reflections in all horizontal and vertical lines with
integer coordinates. We claim that the theorem remains true for the Ising model on any connected
graph £ with these properties(The Ising model on the triangular and hexagonal lattices has
already been treated in Ref. 10.

To be more precise, I6R={Ry hor. Rk verr:ke Z} denote the set of all reflections of the
Euclidean plangR? in horizontal or vertical lines with integer coordinates, and suppdse a
locally finite subset ofR? which (after suitable scaling and rotatipis R-invariant for all R
e R. Such an is uniquely determined by its finite intersection with the unit ci®d]?, and it
is periodic with period 2. Suppose further thais equipped with a symmetric neighbor relation
“ ~" satisfying

(L1) eachxe £ has only finitely many “neighbors'y € £ satisfyingx~y;

(L2) x~y if and only if Rx~Ry for all Re R;

(L3) (£,~) is a connected graph.

If x~y we say thatx andy are connected by an edge, which is visualized by the straight line
segment betweer andy. The preceding assumptions simply mean {at-) is a locally finite
connected graph admitting the reflectioR& R, and thereby the translation$, ,x e 2Z2, as
graph automorphisms. The fundamental further assumption is

(L4) (£,~) is planar, i.e., the edges R? between different pairs of neighboring points have
only end points in common.

The complementin R?) of the union of all edges then splits into connected components
called the faces of,~).

As will be explained in more detail in the Appendix, the propertiek) to (L4) are sufficient
for all geometric arguments above. Some particular examples are as follows.

(1) The triangular lattice T. This is the R-invariant lattice satisfyingTN[0,1]?
={(1,0),(0,1} and (—1,0)~(1,0)~(0,1)~(2,1); the remaining edges result frain2).

(2) The hexagonal ohoneycomb latticéd. Here, for exampleHN[0,1]2={(3,1),(3,0)} and
(— 31~ (3,1)~(3,0)~(3%,0); all other edges are again determined(bg).

(3) The diced lattice This is obtained from the honeycomb lattice by placing points in the
centers of the hexagonal faces and connecting them to the three points in the west, northeast and
southeast of these faces; to obtain reflection symmetry an additional shiift @) is necessary.
See p. 16 of Ref. 11 for more detalils.

(4) The covering lattice of the honeycomb lattice, t@gomelattice, cf. p. 37 of Ref. 11.

Downloaded 30 Jun 2008 to 129.187.254.47. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



1166 J. Math. Phys., Vol. 41, No. 3, March 2000 H.-O. Georgii and Y. Higuchi

As for the interaction, it is neither necessary that all adjacent spins interact in the same way,
nor that the interaction is invariant under the spin flip. Except for attractivity, we need only the
invariance undesimultaneouslip-reflections(which in particular implies periodicity with period
2). As a result, we can consider any system of spiig) = =1 with formal Hamiltonian of the
form

H<w>=§y ux,y<w<x),w<y>>+§£ Vy(@(x)), (3)

where for alla,be{—1,1} we haveU, ,(a,b)=U, ,(b,a) and
(H1) Uy ((1,-)— U, (—1,-) is decreasing of—1, 1};
(H2) Uy (a,b)=Ugyry(—a,—b) andV,(a) =Vg,(—a) for all Re R.

Assumption(H1) implies that the FKG inequality is applicable, aftiR2) expresses the invariance
under simultaneous spatial reflection and spin flip. We thus obtain the following general result.
Theorem 6.1: Consider a planar grapi£,~) as above and an interaction of the form (3)

satisfying (H1) and (H2). Then there exist no more than two extremal Gibbs measures
The standard case, of course, is the ferromagnetic Ising model without external field; this
corresponds to the choidg, ,(a,b)=—Bab andV,=0.
1

But there is also another case of particular interest. Congldef?+ (3, 3), the shifted square
lattice with its usual graph structur€. is bipartite, in the sense thdt splits into two disjoint
sublattices,Lqven and Lygq, Such that all edges run from one sublattice to the other. If we set
U, y(a,b)=—pBab and define a staggered external field

—ha if Xe Leyen
VA= ha it xe Logg

with he R then the conditiongH1) and (H2) hold; here we take advantage of the fact that the
reflectionsRe R map Leqyen into Logq and vice versa. But it is well-known that this model is
isomorphic to theantiferromagnetic Ising model od? with homogeneous external field the
isomorphism consists in flipping all spins if4q. This gives us the following result.

Corollary 6.2: For the Ising antiferromagnet a&? for any inverse temperature and arbitrary
external field there exist at most two extremal Gibbs measures

This corollary does not extend to nonbipartite lattice such as the triangular lattice. In fact, for
the Ising antiferromagnet of one expects the existence of three different phases for suitable

Another repulsive model to which our arguments can be applied is the hard-core lattice gas on
Z2, which is also known as the hard square model. In this model, the vatdeand 1 are
interpreted as the absence and presence of a particle, respectively, and no particles are allowed to
sit on adjacent sites. Its Hamiltonian is of the fo(&) with

o if a=b=1

U, (a,b)= .
xy(8,D) {0 otherwise,
—logn if a=1
V,(a)= .
«(a) 0 otherwise.

The parameteh>0 is called the activity. Interchanging the valugd on £,44 we obtain an
isomorphic attractive model to which our techniques can be applied, although the interaction takes
the value+« so that the finite energy condition does not hold as it stands. However, there are still
enough admissible configurations to satisfy all needs of the Burton—Keane theorem and our other
applications of the finite energy property; more details will be provided in the Appendix. We
therefore can state the following theorem.

Theorem 6.3:For the hard-core lattice gas ofi? at any activityh >0 there exist at most two
extremal Gibbs measures
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APPENDIX

Here we explain in more detail how our arguments can be extended to obtain Theorems 6.1
and 6.3.
Comments on the proof of Theorem 1) * Connections and contouré basic consequence

*
of the planarity assumptiofL4) is that (£,~) admits a conjugate matching graph,~). As
indicated by the notation, this conjugate graph has the same set of vertices, but the selation

*
~y holds if eitherx~y or x andy are distinct pointgon the borderof the same face ofC,~).
(Note that this matching dual is in general not planar. An interesting exception is the triangular

*
lattice T, which is self-matching.The edges of £,~) are then used to define the concept of
*connectedness. The construction implies that every pathi,ir) is also axpath(i.e., a path in

*
(L£,~), and that the outer boundary of any cluster spath, and vice versdThe latter property
holds for arbitrary matching pairs of graphs as defined in KeStéar,example. However, we also
used repeatedly the former property which does not extend to general matching pairs. In particular,
this means that our results do not apply to the Ising model on the matching conjugateadfing
nearest-neighbor interactiomsd diagonal interactions.

Another consequence of planarity is that we can draw contours separating clusters from
xclusters. Such contours can either be visualized by broken lines passing through the edges of
(L£,~), or simply as a pair consisting of a quasipath and an adjaapmsipath, namely the two
faces of the contour.

(2) Half-planes and boundary line#\ half-plane in £ is still defined as the intersection of
£ with a set of the form{xe R%:x;=k},ke Z,i €{1,2, or with < instead of=. However, the
“boundary line” | is now in general not a straight line but rather the $et{xe =:
x~y forsomey ¢ 7w} =d(7°). In particular,| is not necessarily a line of fixed points for the
reflectionR e R mappings onto its conjugate half plang’. Rather, for eaclk | we have either
Rx=x or Rx~x. For example, forlL=T, the triangular latticesr,, and 74, have a common
straight boundary line, but the boundariesmfy, and 7. are not straight; besides a common
part on the vertical axis they also contain the adjacent poinkg @nd (—1Kk), ke 2Z, respec-
tively. For the honeycomb latticd, 7, and 74, have again a common straight boundary line,
but 7 ign; and e have no common points.

Nevertheless, it is easy to see that Lemma(argl thus also Lemma 5.2re still valid, and
these are the only results in which fixed points of reflections show up. In all other places one has
only to observe that the axég, andl, ¢ get a different meaning according to which half-space is
considered; so one has to distinguish between an “upper” horizontal @xis (being the bound-
ary “line” of m,;) and a “lower” horizontal axislyo; gown and similarly betweer, e and
Ivert,ri ht-

(%) Construction of connections and path&t various places we needed to establish pre-
scribed connections or to construct specific paths. For example, the key idea of Lemma 3.4 was to
extend —*semicircuits in7r to the boundary line ofr. In the present setup, this will in general
require a finite—path rather than a single spin, so that one has to adapt the definitionAQf
accordingly. In view of(L3) this is obviously possible, and one will only end up with a higher
power of 8. Similarly, the—semicircuito in the proof of Lemma 4.2 has in general to be redefined
using the geometry of, and the same is the case for the poiki<) in the definition ofA, in the
proof of Corollary 3.2, the pathg , in the proof of Lemma 4.3, and the sefg , in the proof of
Lemma 5.4; see also commei®.

(4) Flip-reflection invariancen the standard Ising model &7 it is true that the phases™
andu ™ are invariant under alRe R and related to each other by the spin flipHowever, we did
not make use of this fact, cf. the comments after Corollary 3.3. We only needegl that
u~oT for all Re R (implying thatu™ and ™ are periodic, and that any flip-reflection invariant
w is different from these phases; the latter was used in Lemmas 3.1 andTAi8, however,
already holds whenever the interaction is only invariant under simultaneous flip-reflections, as
stated in assumptiofH2). This property is also sufficient for flip-reflection domination and the
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point-to-semicircuit lemma, as their proofs only use the composed mappindor Re R.

(5) Translations Since the lattice and the interaction are in general only preserved by the
translation subgrou,, x e 2Z2, we have to confine ourselves to this class of translations. We
did this already in the proof of the butterfly lemma and its Corollary 3.2, and we can obviously do
so in the proof of Lemma 4.2. The only statements needing discussion are Proposition 5.1 and
Lemma 5.4. The former now only asserts that each Gibbs measure is periodic with period 2.
Accordingly, in Lemma 5.4 and below we have to replagg, by 19ﬁ0r In addition, the minimal
distance between distinct lattice points can be less than 1, and the origin does not necessarily
belong toL. So,a, has to be defined as the abscissa of the rightmost point in the boundary line
of 7y up Which belongs td+*up, andd,(w, w’)=an(w)—an(w’)=an(w)—an(f}ﬁorw’)+2. In
general, we then have only the inclusion

FC{d,>—2 eventuallyu{d,<2 eventually,

and we need to derive a contradiction from the assumption dhiat 2 eventually almost surely.
This means that we have to prescribe the configurations for the two layers on larger setg than
(depending om and botha,(w) and a,(w')) to obtain the inequality(|d,|=2)=év(|d,.,
|<2) for somes>0. While this is tedious to write down in full generality, it should be clear how
it can be done.

Comments on the proof of Theorem 6J8st as in the case of the Ising antiferromagnet, we

replaceZ? by its translateC=Z2+ (3, 3). So we make sure that all reflectioRs= R map Leyen
into £,qq and vice versa. Nevertheless, below it will be convenient to ignore the shif Byand
to characterize the lattice points by integer coordinates. Performing a spin flig;gmve obtain
an isomorphic model which is defined by setting

{oo if a=e(x),b=¢€(y)
Uy y(a,b)=

0 otherwise,

—logh\ if a=e€(x)

Via=], otherwise,
wheree(x)=1 if Xe Leyen, ande(x)=—1 otherwise. This model satisfies bdtH1) and (H2).
However, the finite energy condition is violated becausg takes the value-«. Let us see how
this obstacle can be overcome. The basic observation is that the “vacuum configuratéoran
occur in any finite region with positive probability.

(1) In the proof of the Burton—Keane theorem, the finite energy property is used to connect
different +clusters with positive probability. This is still possible because for any boany x
e A, any finite number of pointgy,... Xce JA, and anyw with o(X;)="""=w(Xx)=+1 we
have

pa(x is +connected toxg,...x,)>0.

(2) A different use of the finite energy property is made in the proofs of Corollary 3.2 and
Lemma 4.3: the eventd, there involve the existence of both and —paths. To adapt the proof
of Corollary 3.2 to the present case we redefgeas the event that a prescribed pox £,4q
belongs to a two-sided infinite-path with its two halves staying i, and mgoun, respectlvely,
and a neighbor poing e L., belongs to an infinite-cluster; forke 2Z we setA,= ﬁhoer A
+spin atx then does not interfere with-aspin aty. Therefore, ifA is a sufficiently large box and
uq,U,,Uze dA are three points belonging, respectively, to infinite+, —clusters meeting\, we
can find path$4,p, in A from x to u; resp.u, and a pattps fromy to u; such thaty is the only
site of p; which is adjacent t@,;U p,. The configuration iml\ which is equal to+1 onp,Up,,

—1 onps, and —e€ otherwise then has positive conditional probability given the configuration in
AC. This shows thaj(Ag)>0. The proof of Lemma 4.3 can be adapted in a similar manner.
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(3) In Lemma 4.2 we used the finite energy property to make sure,utﬁi;;lt(wE —1onp)
>0, where p={0}x{-n+1,..,0. To obtain the same result here we simply skt
=pUdp\{x,=—n} and observe that

pui(w=—1 on p,o=—¢€ on A\p)>0

wheneverw(0,—n)=—1.

(4) Uniform lower bounds for conditional probabilities were used twice, in the proofs of the
shift lemma and the contour fluctuation lemma. In the proof of Lemma 3.4, it is sufficient to
replace the sefx,y} by A(X)UA(y), where A(x)={k—1k,k+1}x{n—1n} whenx=(k,n).

This is because fow(k,n+1)=—1 we have the estimate

A1
Mix(@(X)=—1, w=—€ on A(X)\{x})=4d= EESVLE
More care is needed in the proof of Lemma 5.4 where we used a uniform estimate for the

conditional probability ofBy, given Ay . First, according to commer({6) on the proof of
Theorem 6.1 we have to specify the abscisagsv),a,(w’) by two parameterg,k’ e Z with
|[k—k’|=<1. Note, however, that the poina{(w),n) necessarily belongs 6., because other-
wise w= € at the adjacent pointaf(w),n+1) and @,(w) +1,n+1); but this is excluded by the
hard-core interaction. Therefore we have in fletk’, and we can consider the eve{g,, as
before. Next we redefind, , as the sefk—1,..k+2}x{n—1n}, andBy , as the event that
w(k,n)=w(k+1,n)=1 (as beforg, o’ (k,n)=w’(k+1n)=—1 (in variation of the former defi-
nition), and anything else occurs at the remaining sited gf (e.g., the vacuum configuration
—¢). We then haval,=2 onA, ,NBy ,, and for ,0") € A, we find

’LLZI<,n® Mxk,n(Bk‘n) = (1+—)\)8 0

as above. We can thus argue as before.
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