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1. Introduction

The Potts model is one of the classical models of statistical mechanics exhibiting a phase
transition. In its standard version, it is defined on the square lattice Z

2, where it was first
studied [1]. The parameter controlling its phase transition is temperature: at sufficiently
high temperatures the Gibbs measure is unique, while for low temperatures the number of
translation invariant extremal Gibbs measures (pure phases) coincides with the cardinality
of the spin state space (usually denoted by q) [2]. Moreover, when q is large enough, these
regimes meet at a specific value of the temperature where q distinct ‘ordered’ phases
and one ‘disordered’ phase coexist. This was shown in [3] by using reflection positivity
arguments, and in [4, 5] by Pirogov–Sinai theory. The transition is in this case of first
order, meaning that exactly at the transition point the derivative of the pressure with
respect to temperature has a jump.

The mechanism of the phase transition is well understood. When q is in the low range,
the appearance of a phase transition is explained by ground state degeneracy, similarly
to the Ising model: the Ising model has two ground states (indeed, it is equivalent with
the Potts model for q = 2), while the Potts model has exactly q such states. As q
becomes larger, there is an ever increasing possibility for entropy to dominate, and for
large enough q there is a temperature at which energy and entropy balance each other,
leading to coexistence of the high-temperature and low-temperature phases.
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To understand the structure of these pure phases, one has to have a notion of what
a typical spin configuration looks like in each such Gibbs state. At present, there is a
suggestive picture offered by the random cluster representation. According to this, a
phase transition in the Potts model occurs exactly at that value of the temperature for
which the associated random cluster model is at the percolation threshold [6, 7]. This is
possible to prove for d ≥ 2, and in fact for quite general underlying lattices. The structure
of the percolation clusters allows a good insight into the typical configurations of the Potts
pure phases.

In this paper we consider the similar problem of non-uniqueness for the Potts model
placed in the continuum instead of a lattice. In this case, the particles are not sitting
in lattice points but at random points in R

d. The a priori distribution of the set of
occupied positions is a Poisson process with activity z, which is then modified by the
Potts interaction—a repulsion between particles of different types. (In the case of zero
temperature, this model coincides with the multitype hard-core exclusion model of Widom
and Rowlinson [8].) The crucial parameter is then z: it is known that, for each number q
of different types and at any fixed temperature, there is only one Gibbs measure whenever
z is small enough, while for high enough values there are q translation invariant extreme
Gibbs measures; see [4, 8, 9] and the more recent papers [10, 11] using random cluster
methods. However, in the continuum setting it has not been proved so far that these two
regimes meet at a single critical activity zc, and that the phase transition at zc is of first
order when q is large enough.

The difficulty lies in the fact that there are no obvious extensions to the continuum of
the methods available for the lattice Potts model. On the one hand, reflection positivity
does not apply to continuum models. On the other, the contour techniques of Pirogov–
Sinai theory used in [4, 5] do not appear to admit an immediate extension. These papers
either deal with the continuum Widom–Rowlinson model, but then only cover the case
when z is large and q is held fixed (not necessarily large), proving the coexistence of just
q phases, or show the coexistence of q + 1 phases at zc for large q, but this only for the
lattice Potts model.

As a rigorous proof is still lacking, it should be worthwhile to report on further
progress. Based on the random-cluster representation of the model, we investigate the
structure of clusters in terms of their dissociation probabilities under resampling of
locations, and show that clusters with positive dissociation probabilities are unlikely to
occur uniformly in the activity z when q is large. (We believe that these ideas will
eventually lead to a rigorous proof of a first-order phase transition, but at this stage there
are still a number of difficulties to overcome.) On the other hand, we have undertaken a
numerical study of these problems. We use a natural continuum analogue of the Swendsen–
Wang cluster algorithm which was originally designed for the lattice Potts model. Arguing
that a coexistence of ordered and disordered phases manifests itself as a medium-term
dependence of the algorithm on the initial conditions, we find that for any q there is only
one critical activity zc, and the phase transition at zc is of second order when q = 2, 3, 4,
while it is of first order for q ≥ 5.

This picture confirms the main results of earlier numerical studies [12]–[14] based on
the so-called invaded cluster algorithm. However, the earlier results were not conclusive
about the order of the transition in the q = 4 case, which we can better determine now.
In addition, the exact relationship between the stationary measure of the invaded cluster
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algorithm and the corresponding finite volume Gibbs measures of the Potts model is not
known. It has only been postulated that in the infinite volume limit there should be a
unique activity z such that they coincide, but this remains to be proven.

Therefore, we felt it necessary to make an independent numerical study using an
algorithm whose stationary measure we can show to be a Gibbs measure of the Potts
model. This enables us to check, at least numerically, some of the results obtained by
the invaded cluster algorithm. As already mentioned, our results qualitatively confirm the
earlier ones, and it is plausible that the invaded cluster algorithm describes the continuum
Potts model in the infinite volume limit. However, we also found a case in which the
invaded cluster algorithm gave results with significant finite size bias, slowly decreasing
with the volume. Such behaviour makes the control of finite size effects in the invaded
cluster algorithm difficult, and a careful analysis of the bias would be advisable before the
results are actually applied to describe the Gibbs states of the Potts model.

The outline of this paper is as follows. In section 2 we introduce the continuum Potts
model and the continuum Swendsen–Wang algorithm. In section 3 we analyse the typical
structure of clusters in the high-q continuum Potts model in terms of their dissociation
probabilities, and discuss the behaviour of the algorithm in the presence of first-order
phase transitions. Section 4 provides our simulation results, while section 5 contains a
detailed discussion including a comparison with the results obtained by the invaded cluster
algorithm, and a discussion on the structure of pure phases.

2. Model and algorithm

2.1. Potts model in the continuum

The continuum Potts model is a model of point particles having q ≥ 2 different types
and sitting in a rectangular box Λ ⊂ R

d, d ≥ 2. Rather than thinking of particles of
different types, one may also think of particles with a ferromagnetic spin with q possible
orientations. A configuration of particles in Λ is given by a pair X = (X, σ), where X
is the set of occupied positions, and σ : X → {1, . . . , q} is a mapping attaching to each
particle in X its type, or ‘colour’. Writing Xa = {x ∈ X : σ(x) = a} for the configuration
of particles of type a, we may also think of X as the q-tuple of the pairwise disjoint sets
Xa belonging to XΛ = {X ⊂ Λ : #X < ∞}, the set of all finite subsets of Λ. The

configuration space is thus equal to X (q)
Λ , the set of q-tuples of pairwise disjoint elements

of XΛ. The particles are supposed to interact via a repulsive interspecies pair potential
ϕ : R

d → [0,∞] of bounded support. For simplicity we confine ourselves to the case of a
step potential

ϕ(x−y) =

{
1 if |x−y| ≤ 1,

0 otherwise

already considered, for example, in [9, 15]. The Hamiltonian in Λ is thus given by

HΛ(X) =
∑

1≤a<b≤q

∑
x∈Xa,y∈Xb

ϕ(x−y). (2.1)

Here we impose periodic boundary conditions, meaning that the difference x−y has to be
understood modulo Λ. (We note in passing that one could also add a molecular, type-
independent interaction term, as was done in [11]. Here, however, we stick to the simple
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case above.) The associated Gibbs distribution with activity z > 0 and temperature
T ≥ 0 is then

µΛ,z,T (dX) = Z−1
Λ,z,T exp[−HΛ(X)/T ]

q∏
a=1

z#Xa LΛ(dXa), (2.2)

where LΛ is the Lebesgue–Poisson measure on XΛ defined by

LΛ(A) =
∑
n≥0

1

n!

∫
Λn

1A({x1, . . . , xn}) dx1 · · ·dxn

and ZΛ,z,T is the normalizing constant. The zero-temperature case corresponds to the
classical model of Widom and Rowlinson [8] with hard-core interspecies repulsion. One
can then imagine that the particles form balls of diameter 1 which can overlap only when
they are of the same type.

The behaviour of the infinite-volume Gibbs states of this model is completely
understood when z is either small or large. If z is small enough, there is a unique infinite-
volume state which is disordered, in that it is invariant under permutations of particle
types; this can be seen, for example, by using disagreement percolation; cf proposition 7
of [16]. If z is sufficiently large (depending on T ), there exist q distinct phases which
are ordered, or demixed, in that one particle type is more frequent than all other types;
see [10, 17] for the case T = 0 and [9, 11] for general T . It is expected, but not rigorously
known, that there exists a sharp activity threshold zc = zc(T ) such that the infinite-volume
Gibbs state is unique when z < zc and non-unique for z > zc. (This lack of knowledge is
due to the fact that the model does not have any useful stochastic monotonicity properties.
The only monotonicity known is that the particle density is an increasing function of z;
cf section 4.2 of [16] and equation (4.1).) If q is large enough, it is further expected that
the transition at zc is of first order, meaning that the disordered and the q ordered phases
exist simultaneously. This is the problem we address in this paper.

2.2. Random-cluster representation

Just as the lattice Potts model, the continuum Potts model admits a random-cluster
representation of Fortuin–Kasteleyn type; see [18] and the references therein, as well
as [10, 11]. This random-cluster representation will become important in the following.
The random-cluster measure associated to (2.2) is a probability measure for random
graphs Γ = (X, E) in Λ. The vertex set X is obtained from the configuration X = (X, σ)
by disregarding the particle types described by σ, and the edge set E is obtained by
drawing random edges between the points of X. Specifically, for each X ∈ XΛ let EX

consist of all sets of non-oriented edges between pairs of distinct points of X, and νX,T

be the probability measure on EX for which an edge between a pair {x, y} ⊂ X is drawn,
independently of all other edges, with probability p(x−y) = 1 − e−ϕ(x−y)/T ; as before,
the difference x−y is understood modulo Λ. (In the Widom–Rowlinson case of hard-core
interspecies repulsion, the randomness of the edges disappears in that all points of distance
≤1 are connected automatically.)

The random-cluster measure associated to (2.2) thus lives on the space GΛ = {Γ =
(X, E) : X ∈ XΛ, E ∈ EX} of all finite graphs in Λ, and is given by

χΛ,z,T (dX, dE) = Z−1
Λ,z,T z#Xqk(X,E)LΛ(dX) νX,T (dE), (2.3)

doi:10.1088/1742-5468/2005/06/P06011 5

http://dx.doi.org/10.1088/1742-5468/2005/06/P06011


J.S
tat.M

ech.
(2005)

P
06011

The continuum Potts model at the disorder–order transition

where k(X, E) stands for the number of clusters of the graph (X, E), and ZΛ,z,T again
denotes the normalization constant. (Note that this definition makes sense for any real
q > 0.) As indicated by our notation, the normalization constant is in fact the same in
either of equalities (2.2) and (2.3) for any allowed values of the parameters. This was
established in [11] as part of the proof for the following precise relationship between the
two measures:

Proposition 2.1 (µ � χ) Take a particle configuration X = (X, σ) ∈ X (q)
Λ with

distribution µΛ,z,T and define a random graph (X, E) ∈ GΛ as follows: independently
for each pair {x, y} of points of the same type (i.e., σ(x) = σ(y)) let {x, y} ∈ E with
probability p(x−y) = 1 − e−ϕ(x−y)/T . Then (X, E) has distribution χΛ,z,T .

(χ � µ) Pick a random graph Γ = (X, E) ∈ GΛ according to χΛ,z,T and define a type
assignment σ as follows: for each cluster C of Γ assign a type a ∈ {1, . . . , q} independently
and with equal probability, and then define σ(x) = a for all x in the union of all clusters
of the type a. Then X = (X, σ) has distribution µΛ,z,T .

To obtain a joint picture of the continuum Potts model and its random-cluster
representation, one should think of cluster-coloured graphs Γσ = (X, E, σ), where
Γ = (X, E) ∈ GΛ and σ is a mapping attaching to each cluster C of Γ a colour σ(C) ∈
{1, . . . , q}. Let us use the notation 〈f〉Λ,z,T for expectation values of a random variable f on
the cluster-coloured graphs. The continuum Potts model is then obtained by interpreting
σ as a function on X which is constant on all clusters, and then forgetting the edges E; that
is, for any f which depends only on X = (X, σ), 〈f〉Λ,z,T =

∫
µΛ,z,T (dX) f(X). Likewise,

forgetting the colours one arrives at the random-cluster measure: for f depending only
on (X, E), we have 〈f〉Λ,z,T =

∫
χΛ,z,T (dX, dE) f(X, E).

2.3. Conditional single-type distributions

The Gibbs distribution µΛ,z,T in (2.2) also has another useful property easily exploited for
simulation. Namely, if we fix all particles except those of a given type a ∈ {1, . . . , q}, then
the conditional distribution of the particles of type a is Poisson with a simple intensity
function. Specifically, for any bounded non-negative function u on Λ let

πu
Λ(dX) = exp

[
−

∫
Λ

u(x) dx

] ∏
x∈X

u(x) LΛ(dX) (2.4)

be the Poisson point process on XΛ with intensity function u. Then the following
observation follows immediately from the definitions (2.1) and (2.2):

Proposition 2.2 Let 1 ≤ a ≤ q be a given type and, for any X = (X, σ) ∈ XΛ, let
X �=a = {x ∈ X : σ(x) 	= a} be the set of positions of all particles having types different
from a. Then, under µΛ,z,T , the conditional distribution of Xa given X �=a is equal to the

Poisson point process π
z p( · |X�=a)
Λ with intensity function z p( · |X �=a), where

p(x|X �=a) = exp

[
−

∑
y∈X�=a

ϕ(x−y)/T

]
.
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To simulate π
z p( · |X�=a)
Λ one can use the well-known fact that π

z p( · |X�=a)
Λ can be obtained

from the homogeneous Poisson point process πz
Λ with constant intensity function z by a

random thinning: each point x from a πz
Λ-sample X is kept, independently of all other

points, with probability p(x|X �=a); otherwise x is removed. In the spirit of the random-
cluster representation discussed above, this can also be achieved by independently drawing
(virtual) edges between the points x of X and y of X �=a with probability p(x−y), and
deleting all x ∈ X that are connected by an edge to some y ∈ X �=a.

2.4. The continuum Swendsen–Wang algorithm

The algorithm of Swendsen and Wang [19] is by now a standard device for simulating
the lattice Ising and Potts models. It can be characterized as the algorithm which
alternatively applies the transition probabilities relating the Potts model with its random-
cluster representation. The naive analogue for the continuum Potts model would be an
alternative application of the two steps described in proposition 2.1. Note, however, that
these steps always keep the set of occupied positions fixed. That is, these transition steps
are unable to equilibrate the particle positions. (Iterating these steps, one would rather
arrive at the discrete random-cluster distribution of edges between the vertices chosen
initially.) So, one has to combine these steps with a further simulation step which takes
care of the positions. The simplest such step is the Gibbs sampler based on the conditional
probabilities of proposition 2.2. We are thus led to the following continuum version of the
Swendsen–Wang algorithm, variants of which have already been proposed independently
in [20] and [21]:

Continuum Swendsen–Wang algorithm:

Start from any initial configuration X ∈ X (q)
Λ and iterate the sweep consisting of the

following three steps:

CSW 1: Resampling of positions. Successively for a = 1, . . . , q, replace Xa by a sample

from the Poisson point process π
z p(·|X�=a)
Λ , using a random thinning of πz

Λ.

CSW 2: Drawing edges. Let X =
⋃q

a=1 Xa and, independently for each pair {x, y} of
points of the same type, draw an edge from x to y with probability p(x−y) =
1−e−ϕ(x−y)/T . Let E be the resulting set of edges, and consider the graph Γ = (X, E).

CSW 3: Choice of types. For each cluster C of Γ, independently of all other clusters, pick
a random type uniformly in {1, . . . , q} and assign this type to each x ∈ C. Let Xa be
the set of vertices receiving type a, and X = (X1, . . . , Xq).

In view of propositions 2.1 and 2.2, it is clear that the Gibbs distribution µΛ,z,T is invariant
under this algorithm. In fact, the following ergodic theorem holds:

Proposition 2.3 Let Xn ∈ X (q)
Λ , n ≥ 0, be the realization of the continuum Swendsen–

Wang algorithm after n sweeps. Then the distribution of Xn converges to µΛ,z,T in total
variation norm at a geometric rate.
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Proof. It suffices to observe that, in step CSW 1, Xa = ∅ for all a with probability at
least δ = e−zq |Λ|. So, if Xn and X′

n are two versions of the process starting from different
initial configurations but otherwise using the same realizations of randomness, then

Prob(Xn 	= X′
n) ≤ (1 − δ)n,

whence the proposition follows immediately. ��

For practical purposes, particularly in our context, the ergodic theorem 2.3 is rather
misleading. This is because the rate of convergence towards µΛ,z,T can be extremely small,
even for Λ of moderate size. (This is already seen from the number δ above, though this
is only a simple lower estimate of the coupling probability.) In particular, this is the
case in the presence of a first-order phase transition when µΛ,z,T is essentially supported
on disjoint sets Ai, i = 0, . . . , q, that are typical for the q + 1 coexisting phases. In
this case, the sets Adis = A0 and Aord = ∪q

i=1Ai are separated by tight bottlenecks of
the CSW algorithm. In fact, over a fairly long initial period the CSW algorithm will
converge to the conditional probability µΛ,z,T (· |A), with A = Adis or Aord depending on
the initial condition, and µΛ,z,T is reached only after a time that is far exceeding any
reasonable observation period. In this way, one can detect a first-order phase transition
by comparing the CSW algorithm for different initial conditions. We will discuss this
point in more detail in section 3.2.

We conclude this section by comparing the algorithm described above with the related
algorithm invented in [20, 21].

Remark 2.4 Instead of the systematic scan through all types in step CSW 1 above, one
could also use a random scan by resampling only the positions of a random (or, by type
symmetry, a fixed) type. Contracting our step CSW 3 with the successive step CSW 1
(for a single a) one then arrives at the following algorithm proposed in [20, 21]:

Random-scan continuum Swendsen–Wang algorithm: Starting from any initial graph
Γ ∈ GΛ, iterate the following two steps:

(i) Each cluster C of Γ, independently of all others, is deleted with probability 1/q and
retained with probability (q − 1)/q. Let (Xold, Eold) be the remaining graph.

(ii) Choose a sample Xnew from π
z p(·|Xold)
Λ and, independently for each pair {x, y} in Xnew,

draw an edge from x to y with probability p(x−y). Let Enew be the resulting set of
edges, and consider the graph Γ = (Xold ∪ Xnew, Eold ∪ Enew).

While this version has the advantage of remaining completely in the random-cluster
picture (and thus working also for non-integer q), a priori it is not evident whether
it is more efficient or not. Clearly, q sweeps of the random-scan version require the
same numerical effort as one sweep of the systematic-scan version. However, the former
has higher correlations even after q sweeps since the waiting time until all clusters are
resampled (the maximum of the geometric waiting times for replacement of a single
cluster) has expectation larger than q, and thus does not seem to converge at a geometric
rate not depending on the number of clusters. We performed a brief numerical comparison
of the efficiencies and behaviour of the above two algorithms, and these support the above
picture: both algorithms lead to similar behaviour but the systematic scan is slightly more
efficient than the random scan.
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3. Detecting first-order phase transitions in finite volume

3.1. The structure of clusters for high q

In this subsection we present a rigorous result showing a common feature of all clusters at
any activity when q becomes large, in arbitrary dimensions. We recall first what happens
in the planar lattice Potts model; see [3]. For large q it is known that, with probability 1,
the plaquettes (2 × 2 squares) on which the configuration shows one particular of several
typical patterns form an infinite cluster. In the ordered phase with dominating spin value
a the pattern corresponds to the local ground state in which spins take the same value
a, while in the disordered phase the pattern corresponds to a local ceiling state in which
all nearest neighbour spins differ. Configurations which belong to neither category fail
to get weight in the thermodynamic limit. In the continuum Potts system we expect a
similar characterization in terms of percolation: an ordered phase with dominating type
a should be characterized by percolation of spins of value a, and the disordered phase by
percolation of vacancies. Moreover, it should be possible to derive these properties from
certain typical local patterns characteristic of the ordered or disordered case. Corollary 3.2
below will show which kind of local patterns can occur for any z and any phase when q is
large.

In the following we confine ourselves to the Widom–Rowlinson case T = 0. (We
believe that similar estimates should also hold for T > 0, but this would need extra
effort.) Consider a configuration X ∈ XΛ in a box Λ. Since we are in the Widom–
Rowlinson case, the associated set of edges in the random cluster model is deterministic,
namely EX ≡ {{x, y} ⊂ X : |x − y| ≤ 1}. Let C ⊂ X be a cluster of the graph
Γ = (X, EX). We write

U(X \ C) = {x ∈ Λ : ∃ y ∈ X \ C, |y − x| ≤ 1}
for the part of Λ in which any point is connected to X \ C, and ∆C(X) = Λ \ U(X \ C)
for the available free space of C. We consider the probability

δC(X) = L∆C(X)|#C(ξ : k(ξ) ≥ 2). (3.1)

In the above, #C is the number of particles of C,

L∆|N(A) = |∆|−N

∫
∆N

1A({x1, . . . , xN}) dx1 · · ·dxN

is the distribution of a configuration of N particles thrown independently and uniformly
into ∆ (where |∆| is the Lebesgue measure of ∆), and k(ξ) is the number of clusters of
(ξ, Eξ). We call δC(X)dissociation probability, for it measures how big the chance is to
split C into two disconnected parts by a random resampling of its points in the room
available after taking C away. In particular, a small dissociation probability makes it
unlikely for C to admit a pivotal point which cannot be removed without splitting C into
disconnected parts, and therefore expresses some kind of robustness of C. The following
result states that, for large q, all clusters are robust in this sense, and this is a property
uniform in z.

Proposition 3.1 Let T = 0 and κ(Λ) = max{k(X) : X ∈ XΛ} be the maximal number of
clusters in Λ. Then for all q > 0, δ > 0 and z > 0 we have

χΛ,z,0(X ∈ XΛ : ∃ cluster C ⊂ X, δC(X) ≥ δ) ≤ 2κ(Λ)/δq.
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Note that κ(Λ) is of the order |Λ| when Λ is a square. Therefore, this estimate cannot
be applied directly to the infinite volume limit. The main point of the bound is that
it is uniform in the activity z, and thus applies to all possible finite-volume ‘phases’ for
sufficiently high values of q. We have not tried to refine the constant in the proposition,
and 2κ(Λ) is most likely very far from being optimal.

Postponing the proof for a moment, let us first discuss the consequences of this result.
Intuitively, a weak dissociation tendency of a cluster C means that either C is a singleton
(in which case it cannot dissociate), or the available free space ∆C(X) is small compared
to the number of particles. One instance of the latter case is captured by the following
definition: for any given 0 < γ < 1, let a cluster C in a configuration X be called γ-
confined if #C ≥ 2 and ∆C(X) admits no two Borel subsets ∆1 and ∆2 with the same
volume such that they are at least a unit distance apart and each contains a fraction γ/2
of the total free volume, i.e., such that dist(∆1, ∆2) > 1 and |∆1| = |∆2| ≥ γ|∆C(X)|/2.
Of course, this condition means that ∆C(X) must be small, in that it either has diameter
at most 1 or consists of a solid core exceeding the diameter 1 only by some tiny filaments
(possibly scattered all through Λ).

Corollary 3.2 Let T = 0, 0 < γ < 1, a large number N0 ∈ N, and ε > 0 be given. Then
there exists some q0 ≥ 1 such that, for all q ≥ q0 and z > 0,

χΛ,z,0(A
dis
Λ ∪ Aord

Λ ) ≥ 1 − ε,

where Aord
Λ = {X ∈ XΛ : ∃ cluster C ⊂ X, #C ≥ N0} and

Adis
Λ = {X ∈ XΛ : ∀ clusters C ⊂ X, #C = 1 or C is γ-confined}.

Evidently, the event Adis
Λ describes a scenario specific for the disordered phase: for

very small z, all clusters will typically be singletons, and the model is similar to the
hard-core gas of balls of unit diameter. If z increases, the singletons (considered as balls)
will become increasingly tightly packed. At the close-packing density of balls the colour
entropy cannot be increased any more, and the increasing particle density will force the
system to build up confined clusters of two or more overlapping balls. But all clusters
are still separated by channels of vacancies. At the threshold zc, colour entropy breaks
down in favour of positional entropy, which means that the system will form a large
cluster C of size #C ≥ N0, where particles have more positional ‘degrees of freedom’.
It is then plausible that ∆C(X) fills a macroscopic part of Λ and all other clusters are
confined. Since the colour is constant on C, we could conclude that a fixed spin value a
is dominating with overwhelming probability. So, with a proper choice of N0, the Aord

Λ

scenario should be typical for the ordered phases above zc.
We now turn to the proofs of proposition 3.1 and corollary 3.2.

Proof of proposition 3.1. We start by noting a symmetry property of the Lebesgue–
Poisson measure LΛ which readily follows from its definition: for any measurable function
F : X 3

Λ → [0,∞[, the expression∫
LΛ(dX)

∑
ξ⊂X

∫
LΛ|#ξ(dη) F (ξ, η, X \ ξ) (3.2)

doi:10.1088/1742-5468/2005/06/P06011 10
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is invariant under the exchange of the first two arguments of F . Now,

δq ZΛ,z,0 χΛ,z,0(X ∈ XΛ : ∃ cluster C ⊂ X, δC(X) ≥ δ)

≤
∫

LΛ(dX) z#X qk(X)+1
∑
ξ⊂X

1{ξ cluster of X} δξ(X)

≤
∫

LΛ(dX)
∑
ξ⊂X

1{ξ⊂∆ξ(X), k(ξ)=1}

× (|Λ|/|∆ξ(X)|)#ξ

∫
LΛ|#ξ(dη) 1{η⊂∆ξ(X), k(η)≥2} z#(X\ξ∪η) qk(X\ξ∪η)

since k(X)+1 ≤ k(X\ξ ∪ η) under the circumstances described by the indicator functions.
Next we use the symmetry property of expressions of the form (3.2), together with the
fact that ∆ξ(X) depends only on X \ ξ. The last integral then becomes∫

LΛ(dX)
∑
ξ⊂X

∫
LΛ|#ξ(dη) 1{η⊂∆ξ(X),k(η)=1} (|Λ|/|∆ξ(X)|)#η 1{ξ⊂∆ξ(X),k(ξ)≥2} z#X qk(X)

=

∫
LΛ(dX)z#X qk(X)

∑
ξ⊂X

1{ξ⊂∆ξ(X),k(ξ)≥2}L∆ξ(X)|#ξ(k(·) = 1).

Finally, we estimate away the last probability in the last integrand simply by 1 and note
that the condition ξ ⊂ ∆ξ(X) means that ξ is disconnected from X \ ξ and, therefore,
consists of a union of clusters of X. Since there are at most 2k(X) ≤ 2κ(Λ) such unions of
clusters, the last expression is not larger than ZΛ,z,T 2κ(Λ), and the result follows. ��

Proof of corollary 3.2. Let δ = γN0/2 and q0 be so large that 2κ(Λ)/δq0 ≤ ε. By
proposition 3.1, it will be sufficient to show that δC(X) ≥ δ whenever 2 ≤ #C ≤ N0

and C is not γ-confined. However, in this case there exist two Borel subsets ∆1 and ∆2

such that dist(∆1, ∆2) > 1 and |∆1| = |∆2| ≥ γ|∆C(X)|/2 for i = 1, 2. So, a resampling
of the points of C within ∆C(X) will certainly produce at least two clusters whenever all
new points fall within ∆1 ∪∆2, and each of the sets ∆1 and ∆2 gets at least one of them.
Hence

δC(X) ≥ γ#C

[
1 −

2∑
i=1

(
|∆i|

|∆1| + |∆2|

)#C]
≥ δ,

and the proof is complete. ��

3.2. Quasi-absorbing sets of the CSW algorithm

We now take up the discussion begun after proposition 2.3 on the behaviour of the CSW
algorithm in the presence of first-order phase transitions. We will argue that a first-order
phase transition is characterized by the appearance of two different sets which are nearly
absorbing for the CSW algorithm, so that its behaviour over a reasonable observation
period strongly depends on the initial condition. The occurrence of such a dependence on
the initial condition is therefore an indication of a first-order phase transition.

Our reasoning consists of three parts. First we will ask how a first-order transition
will manifest itself in finite volume, then we will study the influence of a quasi-absorbing
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set on the medium-term behaviour of the CSW algorithm, and finally we explain why a
jump of the particle density should imply a bottleneck in the CSW algorithm.

(1) How can a first-order phase transition be observed in finite volume? By definition,
a first-order transition is identified by a discontinuity of the first derivative of the infinite
volume pressure. In our case, with z as parameter, this corresponds to a discontinuity of
the particle density at the transition point zc. It is conjectured that for the continuum
Potts model with sufficiently large q, the percolation threshold zc should drive such a first-
order transition. In addition, at zc one expects a coexistence of disordered and ordered
phases, in that there exist two mutually singular type-invariant Gibbs measures, µdis

zc,T and

µord
zc,T , which can be obtained as limits of the unique type-invariant measures for z ↑ zc

(respectively z ↓ zc), and are the only extremal elements of the set of type-invariant Gibbs
measures. In particular, the average particle density of µdis

zc,T should be different from that

of µord
zc,T

. Since the measure µΛ,zc,T is also type-invariant, its infinite volume limit would
then be a (presumably non-trivial) convex combination of these measures. There are
then two disjoint sets of configurations Adis

Λ and Aord
Λ , approaching the disjoint supports

of µdis
zc,T and µord

zc,T in the infinite volume limit in the sense that µΛ,zc,T (Adis
Λ ∪ Aord

Λ ) → 1

as Λ ↑ R
d, while separately each set has a probability strictly bounded away from zero,

and the conditional measures µΛ,zc,T (· |Adis/ord
Λ ) have average densities which stay a fixed

value apart from each other. Since in both cases the variance of the density tends to zero
in the infinite volume limit, we can also assume the sets to be chosen so that the density
distributions are almost mutually singular.

(2) What is the behaviour of a Markov chain admitting a unique invariant measure
µ almost concentrated on two disjoint sets A1 and A2 such that the conditional measures
µ(· |Ai) can be distinguished by an observable f? It is then plausible to expect that
the sets Ai are nearly absorbing, in that the Markov chain stays within these sets with
probability close to 1. The following remark explores the medium-term behaviour of f for
such a Markov chain.

Remark 3.3 Let (Xn)n≥0 be a Markov chain with a Polish state space E and stationary
distribution µ, A a measurable subset of E with µ(A) > 0, µA = µ( · |A) the associated
conditional distribution and (XA

n )n≥0 the induced Markov chain on A with invariant
distribution µA, and suppose (XA

n )n≥0 is uniformly ergodic. Also, let f : E → R
d be any

measurable observable (not constant on A) and ε > 0. By the large deviation principle
for Markov chains there exists then some δ > 0 such that

Prob

(∣∣∣∣ 1

N

N∑
n=1

f(XA
n ) −

∫
f dµA

∣∣∣∣ ≥ ε

)
≤ e−δN

for all N ≥ 1; see theorems 6.3.8 and 2.3.6 of [22]. Finally, suppose that A is nearly
absorbing for (Xn)n≥0, in that

Prob(Xn+1 ∈ A | Xn) ≥ γ when Xn ∈ A,

where γ is so close to 1 that − ln α/δ < ln(1 − α)/ln γ for some prescribed error probability
α. It then follows that, for large but not too large N , the time average of f along the
first N steps of the original Markov chain (Xn)n≥0 is close to the conditional expectation
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f dµA, with probability close to 1. Namely,

Prob

(∣∣∣∣ 1

N

N∑
n=1

f(Xn) −
∫

f dµA

∣∣∣∣ ≥ ε

)
≤ 2α

when X0 ∈ A and − ln α/δ ≤ N ≤ ln(1 − α)/ln γ. Indeed, (Xn)n≥0 coincides with
(XA

n )n≥0 up to the first time T such that (Xn)n≥0 leaves A, and T is geometrically
distributed with parameter 1−γ. Splitting the event in question into two parts according
to whether T ≤ N or not we therefore obtain the upper bound 1 − γN + e−δN , and the
result follows.

In other words, if a Markov chain Monte Carlo algorithm has a very small probability
of leaving a set A, it typically stays for the whole observation period within A and thus,
during this period, coincides with the induced Markov chain on A which converges to µA.
In the case under consideration, it turns out that the mixing properties of the induced
Markov chains are good enough for this scheme to work for both a set A = Aord

Λ of ordered
configurations, and a set A = Adis

Λ of disordered configurations. We cannot yet give a proof
for the existence of such absorbing sets for the values of q we inspected here, but we believe
they have a characterization similar to what was given for the high-q limit in corollary 3.2
(whence we have chosen the same notation). In fact, the simulations described below
support the existence of such absorbing sets and make clear that a first-order transition
of the continuum Potts model does indeed manifest itself by a pronounced ‘bottleneck’ of
the CSW algorithm between two different quasi-absorbing sets.

(3) Finally we ask: are there any indications that the CSW algorithm does indeed
have a bottleneck between two different quasi-absorbing sets? We will argue that, for
any given ε > 0, a jump greater than ε in the particle density in one sweep of the CSW
algorithm has probability tending to zero in the infinite volume limit (apart from the
very first sweeps). Therefore, if the sets Aord

Λ and Adis
Λ are defined in a way allowing a

distinction by different particle densities then, near a first-order transition point and for
large enough volumes, these sets should be nearly absorbing, and passages from one to
the other should create a bottleneck after a large enough number of sweeps, as this would
require to pass through a gap in the density distribution of µΛ,zc,T .

The density of a configuration can only be changed in step CSW 1. Suppose that the

input configuration is (X, σ) ∈ X (q)
Λ . We remove all particles of type a, and consider the

available free volume, denoted by ∆Xa(X) as in section 3.1. For the Widom–Rowlinson
model, the new particles of type a are distributed exactly according to a Poisson measure
with activity z in this volume. Since the density distribution given by the Poisson measure
on a set with Lebesgue measure v has expectation value z and variance z/v, the new set
has a density z with fluctuations of the order of 1/

√
v. If v � |Λ|, these changes to the

total particle density are negligible, and if v � 1, then the change in the total particle
density is sharply concentrated to (zv − #Xa)/|Λ|. When T > 0, particles can also be
added to the complement of ∆Xa(X), but even then the probability is significant only
where the old particles are not too dense, that is, typically only near the boundary of the
set ∆Xa(X).

If this is not the first sweep, then Xa was obtained by the same procedure and should
consist of regions which either are small containing not too many particles, or have particle
density close to z; see also the discussion in section 3.1 for the high-q limit. Then the
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above argument indicates that typically the particle density should fluctuate like a Poisson
density, that is O(|Λ|−1/2), in one sweep. Our numerical results, to be discussed in the next
section, agree with this scaling relation, apart from second-order phase transition points.

4. Numerical results

4.1. Implementation of the algorithm

In this section we present our results from applying the CSW algorithm to the two-
dimensional Potts model. The main numerical hurdle to overcome in the simulation of
the algorithm is the large number of particles in the kind of volumes we need in order
to get reliable estimates about the properties of the infinite volume phases. Here the
bottleneck is not the memory required to store the configurations, but rather the time
required to find those ‘old’ particles which lie within the interaction radius from a given
‘new’ particle, as well as the time needed for dividing the particles into clusters according
to a given edge configuration.

The second part, the forming of clusters for a given configuration of particles and
edges, can be done very efficiently by using the algorithm described in [23]. We used
the tree-based union/find algorithm given in section 2 B of [23], while simultaneously
keeping track of the size and of the ‘corners’ of the clusters (see section 4.2 for the precise
definition).

To overcome the large volume problem in the first part of the algorithm, we used a
‘hashing’ of the box into smaller cells, altogether N2

h of them. The number of cells in
one dimension, Nh, was chosen so that the average number of particles in the cell, as
determined by the Poisson process with activity z, would be about 10. For each cell, we
created q directed lists, one for each possible type. The list number a contained pointers
to all those particles which had the type a and which were within the interaction radius
(here the unit distance) from the cell.

This information was used to substantially reduce the time needed both in creation of
the thinned Poisson configuration, and in computation of the open bonds: by construction,
if we add a particle of type a anywhere in the cell, then it can interact only with particles
in one of the lists of the cell with a′ 	= a. The use of q separate lists allowed for easy
removal of the particles with a certain type which was needed in the first part of the
algorithm.

All simulations were performed by using square boxes of linear size L, i.e., Λ = [0, L]2,
with periodic boundary conditions. We employed three different initial conditions: a
Poisson sample with activity z, either assigning all particles the type 1, or choosing the
types randomly, and a ‘disordered crystal’ where the particles lie in a certain dense square
lattice with alternating types. The initial conditions with a uniformly coloured Poisson
sample are called here ‘ordered’. The other two alternatives—randomly coloured Poisson
and the disordered crystal—led to the same behaviour (i.e., to measurements within error
bars of each other) in all those cases where we tried both. Therefore, we call them
collectively ‘disordered’ initial conditions in the following.

4.2. Measurements

For measurement of the properties of the infinite volume Gibbs states, we employed the
numerical CSW update algorithm with several values of the box size L to an initial
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configuration X0 ∈ X (q)
Λ . After a preset number of steps, n0 ≥ 1 (called the ‘burn-in’ or

equilibration period), we measured the value of an observable f(Γσ) for the following
consecutive nM > 0 steps, and obtained a sequence of samples fn = f(Γσ

n0+n) for
n = 1, . . . , nM. The values n0 and nM were assumed to be chosen so large that the
average would well approximate the corresponding expectation value,

1

nM

nM∑
n=1

fn ≈ 〈f〉Λ,z,T .

Finding a good choice for n0 and nM was not straightforward. It was particularly difficult
near the phase transition points where we found out that, even for this cluster algorithm,
the equilibration and decorrelation times for relevant observables can be very large. We
chose, quite arbitrarily, n0 = 250 and nM = 2500 as a first guess, and increased these
values when necessary; when quoting the results we will use the shorthand phrase ‘using
n0 + nM sweeps’ to give the actual values used in computation of the results.

To estimate the error arising from the finiteness of nM, we computed the standard
deviation from new samples obtained by dividing the data into 10 blocks: the block
averages are less correlated than two consecutive samples, and as long as nM > 10 ×
(decorrelation time) this should yield a fairly reliable estimate of the error. Explicitly, the
‘errors’ given later were obtained by defining, for nB = nM/10 and k = 1, . . . , 10,

f̄k =
1

nB

nB∑
n=1

f(k−1)nB+n,

then computing the sample variance

S2
f = 1

9

[ 10∑
k=1

(f̄k)
2 − 1

10

( 10∑
k=1

f̄k

)2 ]
= 1

9

10∑
k=1

(
f̄k − 1

10

10∑
i=1

f̄i

)2

of (f̄k), and estimating the standard deviation of the average of (fn) by Sf/
√

10. Some of
the decorrelation times for large boxes were indeed very long (see, for instance, figure 8)
and these more elaborate methods were required to get a sensible error estimate.

For any given coloured cluster configuration Γσ = (X, E, σ) we considered the
following four observables: ρ, ρ′, γ and dperc.

(1) Particle density

ρ(Γσ) = N(X)/L2,

where N(X) = #X is the total number of particles.
(2) Slope estimator ρ′. Since

∂

∂z
〈ρ〉Λ,z,T =

1

z
〈Nρ〉Λ,z,T − 1

z
〈N〉Λ,z,T 〈ρ〉Λ,z,T =

L2

z
Var(ρ), (4.1)

the scaled sample variance of ρ,

ρ′ =
L2

z

1

nM − 1

[ nM∑
k=1

ρ2
k −

1

nM

( nM∑
k=1

ρk

)2 ]

estimates the derivative of 〈ρ〉Λ,z,T with respect to z. This is not an observable in the
previous sense, so we computed its error estimate by using as samples the ten sample
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variances computed from the ten sample blocks of ρ. Note also that if ρ′ remains bounded
when L → ∞, then the corresponding standard deviation of density in one CSW step is
O(1/L) near stationarity.

(3) Largest cluster size γ. This observable measures the ratio of particles in the largest
cluster:

γ(Γσ) = max
C

(#C)/N(X),

where the maximum is taken over all clusters C of Γ = (X, E).
(4) Percolation radius dperc. This quantity measures the spread-out of the clusters

from a given L-independent set S0 in the middle of Λ. As a reference set we used

S0 = {x ∈ Λ : ∃y such that |x − y| ≤ 1/2 and ‖y − (L/2, L/2)‖∞ ≤ 3/2} ,

that is, a central 4 × 4 square with rounded corners. For i = 1, 2, let b−i (Γ) and b+
i (Γ)

denote the minimum and maximum of the coordinates of clusters with particles in S0, i.e.,

b−i (Γ) = min
C:C∩S0 �=∅

min
x∈C

xi, b+
i (Γ) = max

C:C∩S0 �=∅
max
x∈C

xi,

where C runs through the set of all clusters of Γ. Our definition for the percolation radius
then reads

dperc(Γ
σ) = max

i=1,2

{
L

2
− b−i (Γ) − 1, b+

i (Γ) − L

2
− 1, 0

}
.

(This particular choice is adapted to the Widom–Rowlinson case, T = 0, where the most
natural percolating objects are the discs of radius 1/2, as explained in section 2.2. For
convenience, we retained this definition also in the case of positive temperatures where it
can appear to be unnecessarily complicated.) For all practical purposes, it is safe to think
of dperc as the maximal distance the clusters of Γ percolate away from the central 4 × 4
square.

After determining the critical values of z, we also repeated some of the simulations
near these values in order to find out how the particles are distributed between clusters of
different size. To this end, we built histograms for cluster sizes by using the observables

1

N(X)

∑
x∈X

1{#C(x)
N(X)

∈∆} =
∑
C

#C

N(X)
1{ #C

N(X)
∈∆}

where C(x) denotes that cluster of Γ which contains the particle x, and the second sum
goes over all clusters of Γ. They describe the portion of the particles in clusters with size
(relative to N) in the interval ∆. Here the intervals were chosen by dividing [0, 1] into 100
pieces, i.e., using ∆k = [k − 1, k)/100, for k = 1, . . . , 99, and ∆100 = [99/100, 1]. We also
measured the average ratio of particles in very small clusters, with sizes from 1 to 100.

4.3. Computation of the critical activity

For the computation of the critical activity for a fixed temperature T we started from a
box with side length L = 8 and computed the above observables for several values of z
by using an equidistant grid in a suitable range, always for both disordered and ordered
initial conditions. This allowed an inspection of the effect of initial conditions and, apart
from a neighbourhood of a first-order transition, these values always agreed within the
computed error bars.
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Figure 1. The measured values of ρ as a function of z for q = 10 and T = 0
using five different box sizes and 250+2500 sweeps, all with both ordered (black)
and disordered (grey) initial conditions. Only the equilibrated results have been
shown; see the text for explanation.

Table 1. Estimates for the critical activity zc and the order of the transition in
the L → ∞ limit for several q and at zero and one non-zero temperature. The
error estimates are fairly conservative; see the text for how they were obtained
from the simulations.

T = 0 T = 0.5

q zc Order zc Order

2 1.718(7) 2nd 1.86(4) 2nd
3 1.907(8) 2nd — —
4 2.051(4) 2nd 2.273(7) 2nd
5 2.1675(13) 1st 2.424(2) 1st

10 2.56(1) 1st 2.965(25) 1st
50 3.65(30) 1st 4.95(65) 1st

It was expected that some percolation property could be an order parameter for
the transition, and it turned out that both dperc and γ had a pronounced change at the
transition. Using the values measured for ρ, ρ′, γ and dperc we could locate the critical
value zc approximately. The simulations were then repeated in a neighbourhood of this
value on a finer grid, but with twice the length L. This was repeated until sufficient
accuracy was achieved, typically at L = 128, although we had to go up to box sizes
L = 512 for q = 4 and 5. Figure 1 shows the results of such an iteration for the density
in the case q = 10, T = 0.

The order of the transition was determined from the dependence of the observables
on using either ordered or disordered initial conditions. If the different initial conditions
led to different values of density, the transition was determined to be of first order. Our
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Figure 2. The evolution of ρ/z under the algorithm for q = 4 (the left figure) and
q = 5 (the right figure), and for two different initial conditions as described in the
text: ordered (the black line) and disordered (the grey line). In all of these runs,
T = 0, L = 512, and z ≈ zc (z = 2.051 25 for q = 4 and z = 2.168 for q = 5).
nSW denotes the number of ‘sweeps’ performed, and the dotted line represents
the chosen equilibration cut-off, n0.
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Figure 3. The evolution of ρ/z for q = 10, T = 0, and z = 2.54, using L = 128
and ordered initial conditions. nSW denotes the number of sweeps performed,
and the dotted line the preset equilibration cut-off.

results also fully support the discussion made in section 3.2 which allows us to identify
the two different results as properties of the different coexisting phases. Figures 1 and the
q = 5 part of 2 present typical examples of the behaviour in these instances: both initial
conditions lead to density fluctuations O(1/L), but the average values are separated by
a constant O(1). (This is true only for large enough L. For very small L, there is a
significant probability to jump from one density region to another, and then the result is
some average of the values for each phase, and the standard deviation is of the order of
the gap between these values.) In addition, the observed values are right-continuous for
the ordered initial conditions, and left-continuous for the disordered ones.
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Figure 4. The measured values of ρ′ as a function of z for four different box sizes,
computed for q = 3 and T = 0 using 250 + 2500 sweeps. The value shown is an
average of the results with ordered and disordered initial conditions. The shaded
regions depict the results given in [12] for the critical z with L = 160 (left region)
and with L = 40 (right region).

When the values agreed, we next looked at the behaviour of ρ′: since its maximum was
then always found to diverge as some power of L in a neighbourhood of the percolation
threshold, we call these second-order transitions. In figure 2 we have plotted the evolution
of the density under our algorithm for the values in the borderline cases: the largest q for
which the transition was found to be of second order, q = 4, and the smallest q for which
it was of first order, q = 5.

In some cases, especially when using the ‘wrong’ initial conditions near the borders
of a first-order transition region, the equilibration times turned out to be much longer
than the chosen n0—see figure 3 for a typical instance. Similar problems, combined with
very long decorrelation times, plagued the q = 4 simulations in large boxes as well; note,
for instance, that n0 = 250 is clearly insufficient for the left part in figure 2. However,
since typically only one of the initial conditions suffered from these long equilibration
times, we decided, instead of redoing the simulations with very large n0, to throw away
the non-equilibrated value and use only the equilibrated one. This explains some of the
apparently ‘missing points’ in figure 1. Nevertheless, we always kept at least one result
for each z, redoing the simulations with larger n0 when necessary.

The results from this analysis are given in table 1. For estimating finite-size effects,
i.e., the difference of critical values from the L → ∞ limit, we used certain monotonicity
properties observed while doing the simulations. For second-order transitions, the
observable ρ′ exhibits a divergence near the transition points, and the value quoted is the
position of the maximum of the peak for the largest box size used. As can be seen also in
figure 4, this appears to increase monotonically with L, and therefore it can reasonably
be taken as a lower bound for the limiting value. The error given, δzc, is a value such
that for z ≥ zc + δzc the measurements of ρ′ for the two largest boxes agree with each
other. Again, as seen in figure 4, this is a quite robust value, fairly independent of L, and
would in these cases be better understood as an upper bound for the error. For first-order
transitions, we used the property that the ‘coexistence window’ between the disordered
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and ordered phase goes to zero as L → ∞, apparently monotonically. In these cases, the
error is given by the range of values in which both initial conditions were equilibrated
but yielded differing results, plus one grid spacing. For instance, in the table we have
zc = 2.56(1) for q = 10, T = 0, which was obtained from the single coexistence value
shown in figure 1.

5. Discussion

5.1. Comparison with earlier results

The Widom–Rowlinson and continuum Potts models have already been studied
numerically before in [12] and [14]. These simulations used the so-called ‘invaded cluster’
(IC) algorithm introduced in [13] for studying the lattice Potts models near criticality.
This algorithm is similar to the Swendsen–Wang type of algorithms presented here. The
main difference is that instead of generating samples for the finite volume Gibbs measure
directly, a similar updating algorithm with a suitably chosen ‘stopping rule’ is used for
generating samples for a measure which differs from any of the finite volume Gibbs
measures, but which is claimed to approach the correct Gibbs measure in the infinite
volume limit.

The main advantage of the IC algorithm is that an advance scanning of the parameter
space for finding the transition values is not necessary, as the stopping rule is assumed to
be chosen so as to force the system to be at the transition point in the infinite volume limit.
Two stopping rules are used in [12, 14] to study the continuum models: the percolation
rule for q ≤ 3 when the transition was expected to be of second order, and the fixed
density rule for q ≥ 3 to study whether the transition is of the first order. The main
disadvantage of the IC algorithm is that the above-mentioned convergence to the correct
limit measure has not been proved so far and, in any case, it is quite difficult to control
the finite size effects.

In figure 4, we have compared the results for the critical activity zc for q = 3 and T = 0
from the present algorithm to those obtained using the percolating IC algorithm in [12].
The finite size effects appear to be more prominent in the percolating IC algorithm: by
figure 4 increasing the linear size fourfold from L = 40 to 160 does not appear even to
halve the systematic error to the L → ∞ value which we estimated (using lattice sizes up
to L = 256) from the position of the peak in ρ′.

For q = 2, T = 0, we found for the limiting value zc = 1.718(7), while in [12]
zc = 1.7262(4) for L = 160, and zc = 1.7201(7) for L = 40 were measured. The finite size
effects seem to be weaker in this case. In [14], simulations were also performed for a few
non-zero temperatures. Unfortunately, there is only one instance in which we can directly
compare our results with theirs: for T = 0.5, q = 2 we estimated zc(L = ∞) = 1.86(4)
while in [14] for L = 20 with the same parameter values zc = 1.8508(4) is given. Due to
the coarseness of our result, we cannot really compare the finite size effects in this case.

Let us offer a possible explanation for the observed differences between the results
from these two methods. Since percolation (i.e., the existence of a cluster spanning
the whole of Λ) was used as the stopping condition in the results quoted above, every
sample configuration contains a percolating cluster. Even if we assume that samples
approximating the infinite volume measure at the percolation threshold are generated
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Figure 5. The evolution of the density, largest cluster size, and percolation
distance, ρ, γ, and dperc, respectively (see the text for precise definitions).
Ordered initial conditions were used in the left case, disordered in the right,
while otherwise in both cases q = 5, T = 0, z = 2.168 ≈ zc, and L = 512.
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Figure 6. As in figure 5, but for the case q = 10, T = 0, z = 2.56, and L = 128.

by the IC algorithm, this sampling method introduces some bias into the measurements.
Actually, comparing the IC results with ours, it appears that the IC method overestimates
the critical activity zc. This can be understood by observing that, in finite volume, the
probability of having a percolating cluster is a continuous function of z ascending from 0
to 1 around zc, and thus is certainly not close to 1 at zc but only when z is sufficiently
larger than zc.

For first-order transitions, we would expect exactly the opposite to happen: the
percolating IC algorithm should underestimate zc. Indeed, since this algorithm produces
only samples with a percolating cluster, the ordered phase gains an advantage over the
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Figure 7. As in figure 5, but for the case q = 2, T = 0, z = 1.72, and L = 128.
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Figure 8. As in figure 5, but for the case q = 4, T = 0, z = 2.051 25, and L = 512.

disordered phase whenever there is a chance for it to occur. But, in finite volume, the
ordered and disordered phases can coexist throughout a whole range of parameter values z
(rather than only at zc, as in infinite volume). The threshold detected by the IC algorithm
therefore identifies only the lower end of the coexistence interval. Unfortunately, we cannot
test this hypothesis, as the fixed-density stopping rule, and not the percolation one, was
used in [14] for obtaining the critical activity for the q exhibiting first-order transitions.

Apart from these differences, our results confirm those found in [12] and [14]. For both
the Widom–Rowlinson model (T = 0) and the Potts model (at least with this particular
non-zero temperature) we found only a single phase transition point, and the onset of
percolation is an order parameter for this transition. As in these references, we also found
that the transition is of second order for q = 2, 3, 4, and of first order for q ≥ 5.
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Figure 9. Histograms for the probabilities of finding a particle in a cluster which
contains a portion r of the particles. On the left, the data were obtained from the
runs with q = 4 depicted in figure 8 with the shaded area giving the histograms
for the ordered initial condition and the grey line for the disordered. The right
figure shows the corresponding results for the q = 5 runs given in figure 5.
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Figure 10. The probability of finding a particle in a cluster of size s. Measured
from the same runs as the q = 5 part of figure 9, again black corresponding to
the ordered initial condition and grey to the disordered one.

5.2. Structure of pure phases

Apart from localizing the critical activity zc and clarifying the nature of the transition,
our simulation measurements also provide some insight into the structure of the pure
phases. Let us start by considering figure 5, which shows the evolution of our observables
ρ (density), γ (largest cluster size) and dperc (percolation distance) for q = 5 during the
simulation steps for two initial conditions: ordered (left-hand side) and disordered (right-
hand side). It is clear that ρ and γ display more or less stationary fluctuations around
some value that depends on the initial condition. This indicates the stability of the ordered
and disordered phases over the observation period and allows us to infer that these phases
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coexist; recall the discussion in section 3.2. It also shows that the ordered phases have a
higher particle density than the disordered phase, which means that the particle density
in infinite volume should have a jump at zc. Likewise, the proportion of particles in
the largest cluster is nearly 1 in the ordered case and nearly 0 in the disordered case,
from which we conclude that the typical configurations of the ordered phases contain a
macroscopic cluster, while those of the disordered phase do not. A glance at the evolution
of dperc reveals that, in the ordered case, the macroscopic cluster typically hits the central
4 × 4 square. On the other hand, in the disordered case we see many ‘spikes’, revealing
that it can quite well happen that one can walk a long distance from the central 4 × 4
square along the random graph, but the corresponding clusters are quite ‘fragile’ and
filamented, surviving only for a short time. All these effects become more pronounced
when q gets larger, as can be seen from figure 6 for the case q = 10.

By way of contrast, figures 7 and 8 show the corresponding structure in cases q = 2
and 4. It is obvious that essentially no difference can be found between the ordered and
disordered initial conditions, and that the criticality of zc manifests itself only by very
large fluctuations. We thus conclude that the phase transition is of second order. In fact,
it also becomes clear that q = 4 is a boundary case: the portion of particles in the largest
cluster is typically quite large, and so is the percolation distance. This gives a hint that
the onset of percolation at zc is quite rapid, and that the underlying value of z in figure 8
is actually slightly above zc.

Figure 9 presents the cluster size distributions in the second-order case q = 4 and the
first-order case q = 5, again for ordered and disordered initial conditions. For q = 4, there
is again almost no influence of the initial conditions, while for q = 5 there is a dramatic
difference, and the different phases are separated by a range of values of cluster size which
were not observed in either phase: those corresponding to the case when about half of
the particles are in the maximal cluster. Finally, figure 10 shows that in both phases the
portion of particles in small clusters decays like a power-law of the cluster size (note the
log–log scale in the figure). However, in the ordered phase the decay is clearly faster.
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[5] Laanait L, Messager A, Miracle-Solé S, Ruiz J and Shlosman S, Interfaces in the Potts model I.

Pirogov–Sinai theory of the Fortuin–Kasteleyn representation, 1991 Commun. Math. Phys. 140 81
[6] Aizenman M, Chayes J T, Chayes L and Newman C M, The phase boundary in dilute and random Ising

and Potts ferromagnets, 1987 J. Phys. A: Math. Gen. 20 L313

doi:10.1088/1742-5468/2005/06/P06011 24

http://dx.doi.org/10.1007/BF01208713
http://dx.doi.org/10.1007/BF01210743
http://dx.doi.org/10.1088/0305-4470/20/5/010
http://dx.doi.org/10.1088/1742-5468/2005/06/P06011


J.S
tat.M

ech.
(2005)

P
06011

The continuum Potts model at the disorder–order transition
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