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1 Introduction and result

The FKG–Holley–Preston inequality [4, 7, 14] plays a major rôle in the analysis of
probability measures on products of linearly ordered spaces which occur, for example, in
the lattice models of Statistical Mechanics. It provides a condition of attraction between
the coordinates under which any two increasing functions are positively correlated
or, more generally, two probability measures are comparable in the stochastic order.
An analog for point random fields was derived by Preston [15]. Similar to Holley’s
argument in [7], Preston gave a dynamical proof by constructing a suitable coupling
of two ergodic spatial birth–and–death processes which leave the two considered point
random fields invariant. The discrete result, however, also admits non–dynamical proofs
which proceed by induction on the number of coordinates. (The simplest is that of
Batty and Bollmann [2].) So one may ask whether such a “direct” proof can also be
found in the continuous case of point random fields. It is the purpose of this note to
provide such a non–dynamical proof. This proof is technically simpler and allows us
to dispense with a technical condition needed by Preston to ensure the existence and
ergodicity of the birth–and–death processes. As Janson [8] in his proof of an analog of
Harris’ inequality [6] for Poisson point processes (see Example 2.1 below), we will use
a discretization argument which reduces the continuous case to the classical discrete
case.

Let E be a separable metric space with Borel σ–algebra E . E serves as state space
for points, or particles, living on E. A configuration of finitely many particles in E is
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conveniently described by an element of M = Mpf(E, E), the set of all finite integer–
valued measures on (E, E) or, equivalently, of all finite sums of Dirac measures on
(E, E). Given a configuration µ ∈M, we write x ∈ µ if µ({x}) > 0, i.e., if at least one
particle of µ has position x. M is equipped with the σ–algebra F generated by the
counting variables NA : µ→ µ(A) on M, A ∈ E . A probability measure P on (M,F)
is called a point random field (prf).

We will be concerned with the stochastic order between prf’s which is induced by
the usual order on M. Specifically, for µ, ν ∈ M we write µ ≤ ν if µ(A) ≤ ν(A) for
all A ∈ E . (In the particle language, this means that ν has more particles than µ.) A
function h : M → R is called increasing if h(µ) ≤ h(ν) whenever µ ≤ ν. Since the
empty configuration 0 ∈M is minimal in M, each increasing h is bounded from below
by h(0). A set B ⊂M is called increasing if its indicator function 1B is increasing.

For any two prf’s P and Q, we say Q dominates P in the stochastic order, and
write P � Q, if

∫
h dP ≤

∫
h dQ for all increasing (without loss bounded) measurable

functions h : M→ R. By a celebrated theorem of Strassen (cf. Section IV.1.2 of [11]),
for complete E this is equivalent to the existence of a coupling of P and Q which is
supported on the set {(µ, ν) : µ ≤ ν}.

We investigate this stochastic order relation for a class of prf’s which are absolutely
continuous with respect to a Poisson prf. Let λ be a fixed finite reference measure on
(E, E) and P = Pλ the Poisson prf with intensity measure λ. That is, P is the image
of the probability measure e−λ(E) ∑

n≥0
1
n!λ

n on the disjoint union
⋃

n≥0E
n under the

mapping (x1, . . . , xn) → δx1 + . . . + δxn ∈ M, (x1, . . . , xn) ∈ En, n ≥ 0. (The unique
element of E0 with mass e−λ(E) is mapped to the empty configuration 0 ∈M.)

Definition. (a) A prf P belongs to the class Pλ if P � P and its density admits a
version fP with increasing zero–set {fP = 0}.

(b) For each P ∈ Pλ, any measurable function γP : E ×M→ [0,∞[ satisfying

fP (µ+ δx) = γP (x, µ) fP (µ) for all x ∈ E,µ ∈M (1)

is called (a version of) the Papangelou (conditional) intensity of P .

Obviously, the defining condition of Pλ that {fP = 0} is increasing is necessary and
sufficient for the existence of a Papangelou intensity γP . One version of γP can be
obtained by setting γP (x, µ) = fP (µ+ δx)/fP (µ) if fP (µ) > 0 and γP (x, µ) = 0 other-
wise. A different characterization of Pλ explaining the significance of the Papangelou
intensity will be given in Proposition 3.1. In particular, we will see there that each
P ∈ Pλ is uniquely determined by γP . Proposition 3.1 will also imply that the Papan-
gelou intensity of a prf P can be chosen independently of µ (i.e., γP (x, µ) = ρ(x) for
all x, µ and a measurable function ρ ≥ 0) if and only if ρ is λ–integrable and P = Pρλ,
the Poisson prf with intensity measure ρ(x)λ(dx). The following continuous analog of
the FKG–Holley–Preston inequality is the main result of this paper.
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Theorem 1.1 Suppose P, Q ∈ Pλ admit Papangelou intensities p = γP and q = γQ

satisfying
p(x, µ) ≤ q(x, ν) whenever µ ≤ ν and x /∈ ν − µ, (2)

µ, ν ∈M, x ∈ E. Then P � Q.

Intuitively, condition (2) means that it is more likely to add a particle to a typical
configuration ν of Q than to a smaller configuration µ which is typical for P . In other
words, the prf Q exhibits a stronger attraction between the particles than P . This is
seen most clearly in the case P = Q in which condition (2) can be circumscribed as
follows: the more particles are present, the more likely is the appearence of a further
particle. This special case gives us the following point–process version of the FKG–
inequality.

Corollary 1.2 Let P ∈ Pλ, and suppose P is attractive in the sense that γP (x, ·)
is increasing on {N{x} = k} for all x ∈ E and k ≥ 0. Then P has positive correlations,
in that ∫

gh dP ≥
∫
g dP

∫
h dP

for any two increasing bounded measurable functions g and h on M.

Proof. We can assume without loss of generality that g > 0. (Otherwise we
replace g by g + c for a suitable constant c.) The probability measure Q(dν) =
g(ν)P (dν)/

∫
g dP has then the Papangelou intensity q(x, ν) = p(x, ν) g(ν + δx)/g(ν),

and (2) holds for p and q. Hence P � Q, which gives the result. 2

In the next section we will discuss a few examples. In Section 3 we introduce the
‘smallest’ (resp. ‘largest’) prf whose Papangelou intensity lies above (resp. below) a
given function, and investigate their properties. These are our main tool for the proof
of Theorem 1.1 in Section 4.

We conclude this introduction with several remarks.

Remark 1.3 Let P, Q ∈ Pλ with P–densities f = fP , g = fQ. Condition (2) then
implies that

f(µ) g(ν) ≤ f(µ ∧ ν) g(µ ∨ ν) for all µ, ν ∈M (3)

which corresponds directly to the condition of the classical FKG–Holley–Preston in-
equality. Indeed, (3) can be rewritten in the form

f(µ+ α) g(ν) ≤ f(µ) g(ν + α) for all α, µ, ν ∈M with µ ≤ ν, α ⊥ ν − µ.

But this property follows readily from (1) and (2) by induction on α(E). In fact, we
see that (2) and (3) are equivalent when g > 0 (provided we choose a version of p with
p(x, ·) = 0 on {f = 0}.

Remark 1.4 Suppose E is finite. Then M can be identified with the product space
NE , where N is the set of all nonnegative integers. Accordingly, P can be identified

3



with the product of the Poisson distributions with parameters λ({x}), x ∈ E. Together
with the preceding remark this shows that, for finite E, Theorem 1.1 is a special case
of the classical Holley–Preston inequality. We shall prove Theorem 1.1 by reducing it
to the case of finite E by means of a suitable discretization.

Remark 1.5 Although condition (2) is the direct analog of the classical Holley–
Preston condition, its usefulness is much more limited. This is because, in the con-
tinuous case, the particle attraction expressed by (2) interferes with the necessary
requirement of stability which prevents the occurrence of infinitely many particles in
E. A first indication of this conflict is the following observation which follows readily
from (9) below. If condition (2) holds and P is nontrivial on a set A ∈ E , in that
P (NA > 0) > 0, then Q(NA = n) > 0 for all n. In other words, unless P is degenerate,
the dominating measure Q is not allowed to exhibit any kind of hard–core exclusion
between the particles. We shall return to this point in Example 2.2 below.

Remark 1.6 In addition to (2) and the monotonicity of the zero–sets of the P–
densities of P and Q, Preston [15] needs a decay condition on the numbers βn =
supµ∈M:µ(E)=n

∫
γQ( · , µ)dλ in order to ensure the existence and ergodicity of the

spatial birth–and–death processes with invariant measures P resp. Q. On p. 389, he
tries to weaken this condition using an approximation argument. However, one can
show by example that the approximating functions may fail to satisfy the required
decay condition. So one has to resort to refined approximations of the form we use in
Section 4.

2 Examples

In spite of the conflict between attractiveness and stability which we discussed in Re-
mark 1.5, there exists a number of possible applications of Theorem 1.1 and Corollary
1.2. These are the subject of this section.

Example 2.1 Poisson prf’s. The hypothesis of attractivity in Corollary 1.2 is cer-
tainly satisfied when γP = 1 , i.e., if P = P. This shows that each Poisson prf has
positive correlations. This result, which was obtained first by Janson [8], is the point–
process analog of an inequality of Harris [6] which states that every Bernoulli measure
has positive correlations.

A further simple application of Theorem 1.1 is the following “Poisson sandwich
inequality”. If P ∈ Pλ is such that

ρ1(x) ≤ γP (x, µ) ≤ ρ2(x) (4)

for all x ∈ E, µ ∈M and suitable λ–integrable functions ρi ≥ 0 on M then

Pρ1λ � P � Pρ2λ . (5)
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We note that this conclusion can also be deduced from the positive correlations of the
Poisson prf’s Pρiλ. Indeed, if we assume for simplicity that ρi > 0 then condition (4)
simply means that the functions

gi(µ) = fP (µ) exp [−
∫

log ρi dµ]

are increasing (for i = 1) resp. decreasing (for i = 2), and gi is the Pρiλ–density of P
up to a constant factor. (A version of (5) appears also in [3].)

A straightforward extension of Janson’s result above concerns the positive correla-
tions of mixed Poisson prf’s. Suppose I is an interval in R and ρ : I × E → [0,∞[
a measurable function such that ρ(z1, · ) ≤ ρ(z2, · ) when z1 ≤ z1 and each ρ(z, · ) is
λ–integrable. Let Pz = Pρ(z, · )λ and P =

∫
w(dz)Pz for some probability measure w

on I. Then P has positive correlations. For, if g, h are increasing bounded measurable
functions on M then ∫

g h dP ≥
∫
w(dz)(

∫
g dPz)(

∫
h dPz)

≥
∫
g dP

∫
h dP .

The first inequality comes from the positive correlations of the Pz’s. To see the second
inequality we note that, by Theorem 1.1, Pz1 � Pz2 when z1 ≤ z2. The functions
z →

∫
g dPz and z →

∫
h dPz are therefore increasing, and it is well–known [14] that

every probability measure w on a set I with a measurable linear order has positive
correlations. 2

Next we turn to prf’s with interaction between the particles. Recall that the Gibbs
distribution for a measurable “Hamiltonian” H : M→ R ∪ {∞} with

0 < Z ≡
∫
e−H dP <∞

is defined as the prf GH with P–density Z−1 e−H . If {H = ∞} is increasing, GH

belongs to the class Pλ, and its Papangelou intensity satisfies

γH(x, µ) = exp[−H(µ+ δx) +H(µ)] when H(µ) <∞, (6)

x ∈ E, µ ∈M.

Example 2.2 Gibbs distributions with pair interaction. The standard type of Hamil-
tonian has the form

H(µ) ≡ Hu,v(µ) =
1
2

∫
µ(dx)

∫
(µ− δx)(dy) u(x, y) +

∫
µ(dx) v(x) .

Here u : E × E → R ∪ {∞} is a symmetric measurable function, the pair potential,
and v : E → R ∪ {∞} a measurable chemical potential that might be induced by the
interaction with a fixed boundary condition. (That is, v =

∫
α(dy)u(·, y) for a fixed
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configuration α.) A natural version of the associated Papangelou intensity (6) is given
by

γu,v(x, µ) = exp
[
− v(x)−

∫
µ(dy)u(x, y)

]
1Mu(µ),

where Mu = {µ ∈ M : u(x, y) < ∞ whenever δx + δy ≤ µ} is the set of admissible
configurations. Let us investigate under which conditions Theorem 1.1 is applicable.
So let ũ, ṽ be a second pair of potential functions and suppose p = γu,v and q = γũ,ṽ

satisfy (2). We can assume without loss of generality that ṽ = 0 because otherwise λ
can be replaced by e−ṽλ. We also assume for simplicity that v < ∞. (Otherwise we
can confine ourselves to the set {v < ∞} by means of Remark 3.2.) Setting µ = 0
and ν = nδy in (2) with arbitrary n ≥ 1 and y ∈ E we then see that ũ ≤ 0. On the
other hand, it is impossible that

∫
ũ dλ2 < 0 because then the normalizing constant

Z̃ =
∫
e−Hũ,0 dP would be infinite, cf. Proposition 3.2.4 of [16]. Hence ũ = 0 up to

λ2–nullsets. This means that Gũ,0 = P. In other words, if two Gibbs distributions
with pair interaction satisfy (2), the dominating measure must necessarily be a Poisson
prf. Moreover, (2) then reduces to the requirement that γu,v ≤ 1 or, equivalently, that∫
µ(dy)u(·, y) ≥ −v for all µ ∈Mu. There are only two cases of interest where the last

requirement can be fulfilled, namely

(i) u ≥ 0 (the case of pure repulsion), and
(ii) u has a hard core, in that u(x, y) = ∞ when d(x, y) ≤ 1 for a suitable metric d

on E, and u ≥ −ψ ◦ d for a decreasing function ψ : [0,∞[→ [0,∞[ which decays
to zero sufficiently rapidly.

In both cases we can conclude that the Gibbs distributions are dominated by suit-
able Poisson prf’s. But this is the only possible application of Theorem 1.1 to Gibbs
distributions with pair interaction. 2

Since a stable pair interaction can never be attractive, one may ask whether the
conflict between attractivity and stability can be solved by multi–particle interactions.
Adding only a triple interaction is not sufficient because attractivity would also force
the triple interaction to be nonpositive. In fact, it is necessary to include n–tuple
interactions for arbitrary n. (Note that, by the Möbius inversion, every Hamiltonian
can be expressed as a sum of n–tuple contributions.) The next example shows that a
stable Hamiltonian with an appropriate balance between the n–tuple interactions may
indeed be attractive.

Example 2.3 Interactions of Widom–Rowlinson type. Imagine a system of particles
of two types (A and B) with a repulsive pair interaction u ≥ 0 between particles of
different type and no interaction between particles of the same type. The marginal
distribution of the A–particles is then Gibbsian with a Hamiltonian of the form

H(µ) ≡ HA
u,v(µ) =

∫
λ(dy)

(
1− exp [− v(y)−

∫
µ(dx)u(x, y)]

)
, (7)
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µ ∈M; see [5], for example. (The function v : E → R∪{∞} takes account of a possible
interaction between the B–particles and a fixed boundary condition of A–particles.) In
the special case when v = 0 and u(x, y) = ∞ when d(x, y) ≤ 1 and 0 otherwise, we
obtain the Hamiltonian H(µ) = λ(

⋃
x∈µB(x)) introduced by Widom and Rowlinson

[17]; here B(x) is the unit ball centered at x. (This case is also referred to as the
area-interaction model [1].) The Papangelou intensity associated to (7) is equal to

γA
u,v(x, µ) = exp

{
−

∫
λ(dy) (1− e−u(x,y)) exp [− v(y)−

∫
µ(dz)u(y, z)]

}
.

Since u ≥ 0, this function satisfies the attractivity condition of Corollary 1.2. We thus
conclude that the Gibbs distribution GA

u,v with Hamiltonian (7) has positive correla-
tions. (A related result was found earlier in [10].) Moreover, an application of Theorem
1.1 shows that GA

u,v � GA
ũ,ṽ whenever u ≤ ũ and

(1− e−u(·,y))e−v(y) ≥ (1− e−ũ(·,y))e−ṽ(y)

for all y ∈ E. (This follows also from the positive correlations of GA
u,v since dGA

ũ,ṽ/dG
A
u,v

is increasing.) In particular we see that, for any n, each GA
u,v can be squeezed between

GA
un,v−εn

and GA
un,v+εn

with the bounded potential un = u∧n, the hard–core potential
un = u + ∞1{u>n}, and εn = − log(1 − e−n). A less stringent sandwich property is
obtained from (5), namely Pρλ � GA

u,v � Pλ with

ρ(x) = exp
{
−

∫
(1− e−u(x,·)) e−v dλ

}
.

2

Example 2.4 The continuous random cluster model. Let E be a finite box in Rd and
λ = z×(Lebesgue measure on E) for a number z > 0. Since λ is diffuse, P is simple.
That is, P–almost all configurations µ have no multiple points and can thus be viewed
as finite subsets of E. Given such a µ, we draw an edge between any two distinct points
x, y ∈ µ with |x−y| ≤ 1. Let k(µ) be the number of components of the resulting graph.
For any s ≥ 1, the probability measure Ps with P–density proportional to sk(µ) is called
the continuous random cluster measures on E (with free boundary condition).

The interest in Ps comes from the following fact. Suppose s is an integer, and we
assign to each x ∈ µ a “type” σx ∈ {1, . . . , s} as follows. In a first step, all connected
components of µ get independent equidistributed types, and then each particle x ∈ µ

obtains the type of the component to which it belongs. If µ is distributed according
to Ps, the resulting joint distribution of the pair (µ, (σx)x∈µ) is the Gibbs distribution
for particles of s different types with hard–core exclusion between unlike particles of
distance ≤ 1. (The case s = 2 corresponds to the Widom–Rowlinson model considered
in Example 2.3.)

Now, as was observed independently by [3] and both authors of [5], Ps ∈ Pλ with
Papangelou intensity s1−κ(x,µ), where κ(x, µ) is the number of connected components of
µ which meet the ball with diameter 1 centered at x. For geometric reasons, κ(x, µ) ≤ c
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for a constant c <∞ depending on the dimension d. (5) therefore implies that Ps � Pbλ

with b = s1−c. This stochastic domination implies the following. As Pbλ exhibits the
phenomenon of percolation when z is large enough [13], the same must also be true
for Ps. But from this one can easily conclude that the associated multi–type particle
system with intertype hard–core exclusion shows a phase transition. In [5], this line of
reasoning is extended to prove a phase transition in multi–type particle systems with
soft–core repulsion between unlike particles (as in the first sentence of Example 2.3).
This amounts to considering a continuous random cluster model with random edges,
and a key step is again the derivation of a lower bound on the Papangelou intensity to
obtain a stochastic comparison with a Poisson prf.

3 Papangelou intensities and the upper and lower prf’s

We start with a characterization of the class Pλ which clarifies the rôle of the Papangelou
intensities. Recall that the reduced Campbell measure ΓP of a prf P is defined on
(E ×M, E ⊗ F) by

ΓP (C) =
∫
P (dµ)

∫
µ(dx) 1C(x, µ− δx) ,

C ∈ E ⊗F . The reduced Campbell measure of the Poisson prf P is given by Γ ≡ ΓP =
λ⊗P, as is well–known [9] and easy to check.

Proposition 3.1 A prf P belongs to the class Pλ if and only if ΓP � λ ⊗ P . In
this case, any Papangelou intensity γP of P is a version of the Radon–Nikodym density
dΓP /d(λ ⊗ P ), and vice versa. One may choose a version of γP which satisfies the
cocycle property

γP (x, µ) γP (y, µ+ δx) = γP (y, µ) γP (x, µ+ δy), (8)

x, y ∈ E,µ ∈M, and P is determined by γP via the equation

fP (δx1 + . . .+ δxn) = fP (0) γP (x1, 0) γP (x2, δx1) . . . γP (xn, δx1 + . . .+ δxn−1), (9)

n ≥ 1, x1, . . . , xn ∈ E.

In the point process literature, the condition ΓP � λ ⊗ P is known as condition
(Σ′λ), see [12, 9].

Proof. We drop all indices referring to P .
“only if” Let P ∈ Pλ. Using the identity ΓP = λ ⊗P we conclude from (1) that

for each C ∈ E ⊗ F

Γ(C) =
∫

P(dµ)
∫
µ(dx) f(µ− δx + δx) 1C(x, µ− δx)

=
∫
λ(dx)

∫
P(dµ) f(µ+ δx) 1C(x, µ)

=
∫
λ(dx)

∫
P (dµ)γ(x, µ) 1C(x, µ) .
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Hence γ is a version of dΓ/d(λ⊗ P ). On the other hand, (1) obviously implies (9) by
induction on n, and (9) determines f up to a constant which in turn is determined
by the normalization of f . (8) follows by iteration from (1) if we set γ(x, ·) = 0 on
{f = 0}.

“if” This is essentially due to [12]. We reproduce here the argument for later
purposes. Let γ be any version of dΓ/d(λ ⊗ P ). By iteration we then find that the
function (x, y, µ) → γ(x, µ)γ(y, µ+ δx) is a density of the measure∫

P (dµ)
∫
µ(dx)

∫
(µ− δx)(dy) 1{(x, y, µ− δx − δy) ∈ · }

on E×E×M relative to λ⊗λ⊗P . Here we have written 1{. . .} for the indicator function
of the set {. . .}. Since these two measures are symmetric in the two E–coordinates,
it follows that γ satisfies the cocycle property (8) for λ ⊗ λ ⊗ P–almost all (x, y, µ).
Proceeding by induction on the number n of E–coordinates and summing over n, we
find that the function

ϕ(0, µ) = 1 ,

ϕ(δx1 + . . .+ δxn , µ) = γ(x1, µ) γ(x2, µ+ δx1) . . . γ(xn, µ+ δx1 + . . .+ δxn−1)
(10)

on M×M is P⊗ P–almost everywhere well–defined and — up to a factor of eλ(E) —
a version of the Radon–Nikodym density of the reduced compound Campbell measure

Γ̄P =
∫
P (dµ)

µ(E)∑
n=0

1
n!

∫
µ(dx1)

∫
(µ− δx1)(dx2) . . .

∫
(µ− δx1 − . . .− δxn−1)(dxn) 1{(δx1 + . . .+ δxn , µ− δx1 − . . .− δxn) ∈ · }

on M×M relative to P⊗ P . In particular, for every bounded measurable function g
on M we obtain

P ({0}) eλ(E)
∫

P(dα)ϕ(α, 0) g(α) =
∫

Γ̄P (dα, dµ) g(α) 1{µ = 0}

=
∫
P (dµ) g(µ) .

This shows that P � P with density f(µ) = P ({0}) eλ(E) ϕ(µ, 0).
From (10) we conclude further that the set {(x, µ) : f(µ + δx) > 0 = f(µ)} has

measure zero relative to λ ⊗ P = ΓP. This means that for P–almost all µ, f(µ) = 0
whenever f(µ−δx) = 0 for some x ∈ µ. Hence f has a version with increasing zero–set.
2

Remark 3.2 The preceding proof also shows that for each Λ ∈ E and P–almost all
µ ∈ M(E \ Λ), the conditional distribution of P on M(Λ) given the configuration µ

on E \Λ is absolutely continuous with respect to the restriction P1Λλ of P to the state
space Λ, and its density is given by the function α→ ϕ(α, µ)/

∫
ϕ(·, µ) dP1Λλ. See [12]

or Theorem 13.14 of [9]. 2
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Suppose now we are given an arbitrary measurable function a : E ×M → [0,∞[.
Can we define two prf’s Pa, P

a ∈ Pλ such that the corresponding Papangelou intensities
satisfy the inequality γPa ≤ a ≤ γP a ? Eq. (10) suggests that we should define functions
ϕa, ϕ

a : M→ [0,∞[ recursively by ϕa(0) = ϕa(0) = 1 and

ϕa(µ) = min
x∈µ

a(x, µ− δx)ϕa(µ− δx) ,

ϕa(µ) = max
x∈µ

a(x, µ− δx)ϕa(µ− δx)
(11)

when µ 6= 0. We then have the following

Lemma 3.3 (a) ϕa and ϕa are measurable.
(b) If a = γQ for some Q ∈ Pλ then ϕa = ϕa = fQ/fQ(0).
(c) For all µ ∈ M and x ∈ E, ϕa(µ + δx) ≤ a(x, µ)ϕa(µ) and ϕa(µ + δx) ≥

a(x, µ)ϕa(µ).
(d) Suppose π is a measurable map from E into a second space E′, and let π∗ :

µ → µ ◦ π−1 and π# = π × π∗ : (x, µ) → (πx, π∗µ) be the induced maps from M to
M′ = M(E′) resp. from E ×M to E′ ×M′. If a′ : E′ ×M′ → [0,∞[ is measurable
and a = a′ ◦ π# then ϕa = ϕa′ ◦ π∗ and ϕa = ϕa′ ◦ π∗.

Proof. (a) The first equation of (11) can be written in the form ϕa(µ) =
infA∈E0 ϕa,A(µ) for µ 6= 0, where E0 is a countable basis of E and

ϕa,A(µ) = µ(A)−1
∫

A
µ(dx) a(x, µ− δx)ϕa(µ− δx)

if µ(A) > 0 and ϕa,A(µ) = ∞ otherwise. Since the mappings (x, µ) → µ − δx on
{(x, µ) : x ∈ µ} and µ→

∫
µ(dx) g(x, µ) (for any measurable g) are measurable, we see

by induction on n that ϕa,A , and therefore ϕa , is measurable on the set {NE = n} of
n–particle configurations. The measurability of ϕa follows similarly.

(b) is obtained by comparing (11) with (9), (c) is evident, and (d) follows readily
from (11) by induction on the particle number. 2

Suppose we know that a ≤ γQ for some Q ∈ Pλ. Since then

ϕa ≤ ϕa ≤ ϕγQ = fQ/fQ(0) (12)

by Lemma 3.3(b), it follows that ϕa and ϕa are P–integrable. Their integrals are not
less than P({0}) = e−λ(E). Hence we can introduce the probability densities

fa = ϕa

/ ∫
ϕa dP , fa = ϕa

/ ∫
ϕa dP

and the corresponding prf’s

Pa = fa P , P a = fa P (13)

which will be called the lower resp. upper prf for the function a. We will need the
following continuity property of the mappings a→ Pa and a→ P a.

10



Lemma 3.4 Suppose a and ak, k ≥ 1, are nonegative functions on E ×M such that
ak ≤ γQ for some Q ∈ Pλ for all k ≥ 1, and ak → a λ ⊗ P–almost surely. Then
Pak

→ Pa and P ak → P a in total variation norm.

Proof. We only need to show that ϕak
→ ϕa and ϕak → ϕa in L1(P)–norm. This

is because

‖Pak
− Pa‖ =

∫
|fak

− fa| dP ≤ 2
∫
|ϕak

− ϕa| dP
/ ∫

ϕa dP

and
∫
ϕa dP ≥ P({0}) > 0, and similarly for the upper measures. In view of (12)

and the dominated convergence theorem, it is sufficient to prove the almost–sure con-
vergence. Let C = {ϕak

→ ϕa and ϕak → ϕa}. We prove by induction on n that
Dn = {NE = n} \ C has P–probability zero. The case n = 0 is trivial. So let n ≥ 1
and suppose that P(Dn−1) = 0. Let ∆ = {ak 6→ a}. By hypothesis, λ ⊗ P(∆) = 0.
Using (11) in the first step, we obtain

P(Dn) ≤ P(µ ∈M : ∃ x ∈ µ such that µ− δx ∈ Dn−1 or (x, µ− δx) ∈ ∆)

≤
∫

P(dµ)
∫
µ(dx)

[
1Dn−1(µ) + 1∆(x, µ− δx)

]
=

∫
λ(dx)

∫
P(dµ)

[
1Dn−1(µ) + 1∆(x, µ)

]
= 0 .

This completes the induction step and the proof of the lemma. 2

4 Proof of the theorem

Let P,Q ∈ Pλ be two fixed prf’s with Papangelou intensities p = γP and q = γQ . We
assume that (2) holds. To prove Theorem 1.1, we will first modify p and q by means
of truncation and coarse–graining. The modified functions fail to satisfy (2), but a
further modification will ensure that their lower resp. upper prf’s satisfy (2). By the
coarse–graining, we are then in the situation of a finite state space, so that the classical
Holley–Preston inequality applies; cf. Remark 1.4. Finally we will use Lemma 3.4 to
show that the lower and upper prf’s converge to P resp. Q in suitable limits.

Entering into the details, we first assume without loss that λ is a probability mea-
sure. (This is possible because multiplying λ by a factor only changes the Papangelou
intensities by the same factor.) Next, we fix two numbers 0 < δ < k <∞ and consider
the truncated functions

pk,δ = (p ∧ k) ∨ δ , qk,δ = (q ∧ k) ∨ δ (14)

on E ×M. The coarse–graining will be achieved by a finite measurable partition π of
E. We think of π as a measurable mapping from E onto E′ = {1, . . . ,m} for a suitable
number m. As in Lemma 3.3(d), we introduce the associated mapping π∗ : µ→ µ◦π−1

11



from M into the set M′ = M(E′) of all finite point measures on E′. Note that M′ is
countable and its σ–algebra F ′ consists of all subsets of M′.

Let Eπ = σ(π) and Fπ = σ(π∗) be the sub–σ–algebras of E resp. F which are
generated by π resp. π∗. We then form the conditional expectations

pk,δ,π = IEΓ(pk,δ|Eπ ⊗Fπ) qk,δ,π = IEΓ(qk,δ|Eπ ⊗Fπ)

relative to the measure Γ = λ ⊗ P, and we let p′k,δ,π and q′k,δ,π be the associated
factorizations on E′ ×M′ satisfying pk,δ,π = p′k,δ,π ◦ π# and qk,δ,π = q′k,δ,π ◦ π#. Here
we use again the notation π# = π × π∗. To ensure a version of (2) we finally replace
qk,δ,π by q̄k,δ,π = q̄′k,δ,π ◦ π# with

q̄′k,δ,π(x′, ν ′) = q′k,δ,π(x′, ν ′) ∨ max
µ′≤ν′:x′ /∈ν′−µ′

p′k,δ,π(x′, µ′) , (15)

(x′, ν ′) ∈ E′ ×M′. We consider the lower prf Pk,δ,π = Ppk,δ,π
of pk,δ,π and the upper

prf Q̄k,δ,π = P q̄k,δ,π for q̄k,δ,π. These are well–defined because pk,δ,π ≤ q̄k,δ,π ≤ k = γPkλ
.

Theorem 1.1 follows directly from the next two lemmas.

Lemma 4.1 For all k, δ, π, Pk,δ,π � Q̄k,δ,π.

Lemma 4.2 In the limit when π runs through a suitable sequence of partitions, δ → 0
and k →∞, Pk,δ,π → P and Q̄k,δ,π → Q in total variation norm.

Proof of Lemma 4.1. Let h : M → R be an increasing bounded measurable
function, hπ = IEP(h|Fπ) its conditional expectation, and h′π : M′ → R such that
hπ = h′π ◦ π∗.

1) h′π is increasing. By the definition of P, we have for each µ′ ∈M′

h′π(µ′) = IE h(
m∑

i=1

µ′(i)∑
j=1

δZi,j ) ,

where (Zi,j)1≤i≤m,j≥1 are independent random variables such that Zi,j has distribution
λ(· |π−1{i}). (We can assume without loss of generality that λ(π−1{i}) > 0 for all i.)
The claim is thus obvious.

2) Let P ′ (resp. Q̄′) be the lower (resp. upper) prf on M′ for the function p′ =
p′k,δ,π (resp. q̄′ = q̄′k,δ,π) relative to the Poisson prf P′ = Pλ′ with intensity measure
λ′ = λ ◦ π−1. Then P ′ � Q̄′. To see this we note first that P ′, Q̄′ ∈ Pλ′ because p′

and q̄′ are strictly positive. From Lemma 3.3 (c) and (15) we conclude that, for all
µ′, ν ′ ∈M′ with µ′ ≤ ν ′ and all x /∈ ν ′ − µ′,

γP ′(x′, µ′) ≤ p′(x′, µ′) ≤ q̄′(x′, ν ′) ≤ γQ̄′(x′, ν ′) .

That is, P ′ and Q̄′ satisfy condition (2). The assertion therefore follows from Remark
1.4.

12



3) To complete the proof we write∫
h dPk,δ,π =

∫
ϕp′ ◦ π∗ h dP

/ ∫
ϕp′ ◦ π∗ dP

=
∫
h′π dP

′

≤
∫
h′π dQ̄

′ =
∫
h dQ̄k,δ,π .

In the above, we first used Lemma 3.3 (d). Then we replaced h by hπ and noticed that
P′ is the π∗–image measure of P. The inequality comes from steps 1) and 2), and the
final equality is similar to the first two. 2

Proof of Lemma 4.2. 1) Let Pk,δ be the lower prf for pk,δ and Qk,δ the upper prf
for qk,δ, cf. (14). Also, let Pk be the lower prf for p∧ k and Qk the upper prf for q ∧ k.
For given k, we have pk.δ ≤ qk,δ ≤ k = γPkλ

for all δ > 0. Lemma 3.4 therefore implies
that Pk,δ → Pk and Qk,δ → Qk in total variation as δ → 0. Since pk ≤ qk ≤ q = γQ,
Lemma 3.4 also shows that Pk → P and Qk → Q in total variation as k →∞. We thus
only need to find a sequence of partitions π such that, for each k, δ, Pk,δ,π → Pk,δ and
Q̄k,δ,π → Qk,δ as π runs through this sequence. In view of the bound pk,δ,π ≤ q̄k,δ,π ≤ k,
Lemma 3.4 again tells us that we only need to show that pk,δ,π → pk,δ and q̄k,δ,π → qk,δ

Γ–almost surely for a suitable sequence of π’s. We will do this in the next two steps.
2) By hypothesis on E there exists a countable algebra E0 generating E , and a

routine argument shows that F = σ(NA : A ∈ E0). Hence we can find an increasing
sequence of finite measurable partitions π of E such that Eπ ↑ E and Fπ ↑ F as π
runs through this sequence. We simply write π →∞ for the limit along this sequence.
Since Eπ ⊗ Fπ ↑ E ⊗ F as π → ∞, the martingale convergence theorem implies that
pk,δ,π → pk,δ and qk,δ,π → qk,δ as π →∞ with Γ–probability 1.

3) It remains to show that also q̄k,δ,π → qk,δ as π → ∞ with Γ–probability 1.
In view of (15) and the preceding step this will follow once we have shown that, for
Γ–almost all (x, ν),

lim sup
π→∞

max p′k,δ,π(πx, µ′) ≤ qk,δ(x, ν) ,

where the maximum extends over all µ′ ∈ M′ which are such that µ′ ≤ π∗ν and
πx /∈ π∗ν−µ′. Each such µ′ is the π∗–image of some µ ∈M with µ ≤ ν and x /∈ ν−µ,
and then p′k,δ,π(πx, µ′) = pk,δ,π(x, µ). Also, hypothesis (2) ensures that, for each such
µ, pk,δ(x, µ) ≤ qk,δ(x, ν). It is therefore sufficient to show that

Γ
(
(x, ν) ∈ E ×M : ∀ µ ≤ ν, pk,δ,π(x, µ) → pk,δ(x, µ) as π →∞

)
= 1 .

Let ∆ = {pk,δ,π 6→ pk,δ as π →∞}. We show by induction on n that

Γ
(
(x, ν) ∈ E ×M : ∃ α ≤ ν s.t. α(E) = n and (x, ν − α) ∈ ∆

)
= 0. (16)

For each n ≥ 0, the left–hand side of (16) is equal to Γ(gn > 0), where g0 = 1∆ and

gn(x, ν) =
∫
ν(dy) gn−1(x, ν − δy) ,
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x ∈ E, ν ∈M. From Step 2) we know that
∫
g0 dΓ = 0, and the identity Γ = λ⊗P = ΓP

implies that ∫
gn dΓ =

∫
λ(dx)

∫
Γ(dy, dν) gn−1(x, ν)

= λ(E)
∫
gn−1 dΓ

for all n ≥ 1. This proves (16) and completes the proof of the lemma. 2
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