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When Shannon had invented his quantity and consulted

von Neumann how to call it, von Neumann replied:

”Call it entropy. It is already in use under that name

and besides, it will give you a great edge in debates be-

cause nobody knows what entropy is anyway.” [7]

Abstract

We give an overview of some probabilistic facets of entropy, recalling how entropy
shows up naturally in various different situations ranging from information the-
ory and hypothesis testing over large deviations and the central limit theorem to
interacting random fields and the equivalence of ensembles.
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1 Entropy as a measure of uncertainty

As is well-known, it was Ludwig Boltzmann who first gave a probabilistic interpretation
of thermodynamic entropy. He coined the famous formula

S = k logW(1.1)

which is engraved on his tombstone in Vienna: the entropy S of an observed macroscopic
state is nothing else than the logarithmic probability for its occurrence, up to some scalar
factor k (the Boltzmann constant) which is physically significant but can be ignored from
a mathematical point of view. I will not enter here into a discussion of the history and
physical significance of this formula; this is the subject of other contributions to this
volume. Here I will simply recall its most elementary probabilistic interpretation.
∗Opening lecture given at the “International Symposium on Entropy” hosted by the Max Planck

Institute for Physics of Complex Systems, Dresden, Germany, 26–28 June 2000.
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Let E be a finite set and µ a probability measure on E. † In the Maxwell–Boltzmann
picture, E is the set of all possible energy levels for a system of particles, and µ cor-
responds to a specific histogram of energies describing some macrostate of the system.
Assume for a moment that each µ(x), x ∈ E, is a multiple of 1/n, i.e., µ is a histogram
for n trials or, equivalently, a macrostate for a system of n particles. On the microscopic
level, the system is then described by a sequence ω ∈ En, the microstate, associating to
each particle its energy level. Boltzmann’s idea is now the following:

The entropy of a macrostate µ corresponds to the degree of uncertainty about
the actual microstate ω when only µ is known, and can thus be measured by
logNn(µ), the logarithmic number of microstates leading to µ.

Explicitly, for a given microstate ω ∈ En let‡

Lωn =
1
n

n∑
i=1

δωi(1.2)

be the associated macrostate describing how the particles are distributed over the energy
levels. Lωn is called the empirical distribution (or histogram) of ω ∈ En. Then

Nn(µ) ≡ |{ω ∈ En : Lωn = µ}| = n!∏
x∈E(nµ(x))!

,

the multinomial coefficient. In view of the n-dependence of this quantity, one should
approximate a given µ by a sequence µn of n-particle macrostates and define the uncer-
tainty H(µ) of µ as the n→∞ limit of the “mean uncertainty of µn per particle”. Using
Stirling’s formula, we arrive in this way at the well-known expression for the entropy:

(1.3) Entropy as degree of ignorance: Let µ and µn be probability measures on E

such that µn → µ and nµn(x) ∈ Z for all x ∈ E. Then the limit limn→∞
1
n logNn(µn)

exists and is equal to
H(µ) = −

∑
x∈E

µ(x) logµ(x) .

A proof including error bounds is given in Lemma 2.3 of [5].
Though we have used the terms uncertainty and ignorance, the entropy H(µ) should

not be considered as a subjective quantity. It simply counts the number of possibilities to
obtain the histogram µ, and thus describes the hidden multiplicity of “true” microstates
consistent with the observed µ. It is therefore a measure of the complexity inherent in
µ.

To summarize: In Boltzmann’s picture, µ is a histogram resulting from a random
phenomenon on the microscopic level, and H(µ) corresponds to the observer’s uncer-
tainty of what is really going on there.
†Here and throughout we assume for simplicity that µ(x) > 0 for all x.
‡We write δx for the Dirac measure at x ∈ E.
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2 Entropy as a measure of information

We will now approach the problem of measuring the “uncertainty content” of a proba-
bility measure µ from a different side suggested by Shannon [35]. Whereas Boltzmann’s
view is backwards to the microscopic origins of µ, Shannon’s view is ahead, taking µ

as given and ”randomizing” it by generating a random signal with alphabet E and law
µ. His question is: How large is the receiver’s effort to recover µ from the signal? This
effort can be measured by the number of yes-or-no questions to be answered on the aver-
age in order to identify the signal (and thereby µ, after many independent repetitions).
So it corresponds to the receiver’s a priori uncertainty about µ. But, as observed by
Shannon, this effort measures also the degree of information the receiver gets a poste-
riori when all necessary yes-or-no questions are answered. This leads to the following
concept of information:

The information contained in a random signal with prescribed distribution
is equal to the expected number of bits necessary to encode the signal.

Specifically, a binary prefix code for E is a mapping f : E →
⋃
`≥1{0, 1}` from E into

the set of all finite zero-one sequences which is decipherable, in that no codeword f(x)
is a prefix of another codeword f(y). (Such an f can be described by a binary decision
tree, the leaves of which correspond to the codewords.) Let #f(x) denote the length
of the codeword f(x), and µ(#f) the expectation of the random variable #f under
µ. A natural candidate for the information contained in the signal is then the minimal
expected length

Ip(µ) = inf
{
µ(#f) : f binary prefix code for E

}
of a binary prefix code for E. This quantity is already closely related to H(µ), but the
relationship becomes nicer if one assumes that the random signal forms a memoryless
source, in that the random letters from E are repeated independently, and one encodes
signal words of length n (which are distributed according to the product measure µn).
In this setting, Ip(µn)/n is the information per signal letter, and in the limit n → ∞
one obtains the

(2.1) Source coding theorem for prefix codes: The information contained in a
memoryless source with distribution µ is

lim
n→∞

Ip(µn)/n = −
∑
x∈E

µ(x) log2 µ(x) ≡ H2(µ) =
1

log 2
H(µ) .

For a proof of a refined version see Theorem 4.1 of [5], for example.
An alternative coding scheme leading to a similar result is block coding with small

error probability. A binary n-block code of length ` with error level α > 0 is a mapping
f : En → {0, 1}` together with a decoder ϕ : {0, 1}` → En such that µn(ϕ◦f 6= id) ≤ α.
Let

Ib(µn, α) = inf
{
` : ∃ n-block code of length ` at level α

}
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be the minimal length of a binary n-block code with error level α. The following result
then gives another justification of entropy.

(2.2) Source coding theorem for block codes: The information contained in a
memoryless source with distribution µ is

lim
n→∞

Ib(µn, α)/n = H2(µ) ,

independently of the error level α > 0.

The proof of this result (see e.g. Theorem 1.1 of [5]) relies on an intermediate result
which follows immediately from the weak law of large numbers. It reveals yet another
role of entropy and is therefore interesting in its own right:

(2.3) Asymptotic equipartition property: For all δ > 0,

µn
(
ω ∈ En : | 1n logµn(ω) +H(µ)| ≤ δ

)
−→
n→∞

1 .

In other words, most ω have probability µn(ω) ≈ e−nH(µ). This may be viewed as a
random version of Boltzmann’s formula (1.1).

To conclude this section, let us mention that the entropy H(µ) admits several ax-
iomatic characterizations which underline its significance as a measure of uncertainty
and information; cf. e.g. the discussion on pp. 25–27 of [5]. However, compared with
the previous genuine results these characterizations should rather be considered as a
posteriori justifications.

3 Relative entropy as a measure of discrimination

Let E still be a finite set, and consider two distinct probability measures µ0 and µ1

on E. Suppose we do not know which of these probability measures properly describes
the random phenomenon we have in mind (which might again be a random signal with
alphabet E). We then ask the following question:

How easy is it to distinguish the two candidates µ0 and µ1 on the basis of
independent observations?

This is a standard problem of statistics, and the standard procedure is to perform a test
of the hypothesis µ0 against the alternative µ1 with error level α. In fact, if we want
to use n independent observations then we have to test the product measure µn0 against
the product measure µn1 . Such a test is defined by a “rejection region” R ⊂ En; if the
observed outcome belongs to R one decides in favor of the alternative µ1, otherwise one
accepts the hypothesis µ0. There are two possible errors: rejecting the hypothesis µ0

although it is true (first kind), and accepting µ0 though it is false (second kind). The
common practice is to keep the error probability of first kind under a prescribed level
α and to choose R such that the error probability of the second kind becomes minimal.
The minimum value is

ρn(α;µ0, µ1) = inf
{
µn1 (Rc) : R ⊂ En, µn0 (R) ≤ α

}
.

Consequently, it is natural to say that µ0 and µ1 are the easier to distinguish the smaller
ρn(α;µ0, µ1) turns out to be. More precisely:
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The degree to which µ1 can be distinguished from µ0 on the basis of inde-
pendent observations can be measured by the rate of decay of ρn(α;µ0, µ1)
as n→∞.

An application of the weak law of large numbers completely similar to that in the source
coding theorem (2.2) gives:

(3.1) Lemma of C. Stein: The measure for discriminating µ1 from µ0 is

− lim
n→∞

1
n

log ρn(α;µ0, µ1) =
∑
x∈E

µ0(x) log
µ0(x)
µ1(x)

≡ D(µ0 |µ1) ,

independently of the choice of α ∈]0, 1[.

This result was first published in [2]; see also Corollary 1.2 of [5] or Lemma 3.4.7
of [6]. D(µ0 |µ1) is known as the relative entropy, Kullback-Leibler information, I-
divergence, or information gain. If µ1 is the equidistribution on E then D(µ0 |µ1) =
log |E| −H(µ0). Hence relative entropy is a generalization of entropy to the case of a
non-uniform reference measure, at least up to the sign. (In view of the difference in sign
one might prefer calling D(µ0 |µ1) the negative relative entropy. Nevertheless, we stick
to the terminology above which has become standard in probability theory.)

Stein’s lemma asserts that the relative entropy D( · | ·) measures the extent to which
two probability measures differ. Although D( · | ·) is not a metric (neither being sym-
metric nor satisfying the triangle inequality), it can be used to introduce some kind
of geometry for probability measures, and in particular some kind of projection of a
probability measure on a convex set of such measures [3]. As we will see in a moment,
these so-called I-projections play a central role in the asymptotic analysis of the em-
pirical distributions (1.2). But first, as some motivation, let us mention a refinement
of Stein’s lemma for which the error probability of the first kind is not held fixed but
decays exponentially at a given rate. The answer is in terms of Lωn and reads as follows.

(3.2) Hoeffding’s theorem: Let 0 < a < D(µ1 |µ0), and consider the test of µ0

against µ1 on n observations with the rejection region Rn = {ω ∈ En : D(Lωn |µ0) > a} .
Then the error probability of the first kind decays exponentially with rate a, i.e.,

lim
n→∞

1
n

logµn0 (Rn) = −a ,

and the error probability of the second kind satisfies the exponential bound

µn1 (Rcn) ≤ exp
[
− n min

ν: D(ν |µ0)≤a
D(ν |µ1)

]
with optimal exponent.

Hoeffding’s original paper is [16]; see also p. 44 of [5] or Theorem 3.5.4 of [6]. It is
remarkable that the asymptotically optimal tests Rn do not depend on the alternative
µ1. One should note that K. Pearson’s well-known χ2-test for the parameter of a
multinomial distribution (see e.g. [31]) uses a rejection region similar to Rn, the relative
entropy D(Lωn |µ0) being replaced by a quadratic approximation.

Hoeffding’s theorem is in fact an immediate consequence of a much more funda-
mental result, the theorem of Sanov. This elucidates the role of relative entropy for

5



the asymptotic behavior of the empirical distributions Lωn. The basic observation is the
identity

µn(ω) = exp
[
− n

(
D(Lωn |µ) +H(Lωn)

)]
(3.3)

which holds for any probability measure µ on E and any ω ∈ En. In view of our first
assertion (1.3), it follows that

1
n

logµn(ω ∈ En : Lωn = νn)→ −D(ν |µ)

whenever νn → ν such that nνn(x) ∈ Z for all x and n. This can be viewed as a version
of Boltzmann’s formula (1.1) and leads directly to the following theorem due to Sanov
[34], cf. also p. 43 of [5] or Theorem 2.1.10 of [6].

(3.4) Sanov’s large deviation theorem: Let µ be any probability measure on E and
C a class of probability measures on E with dense (relative) interior, i.e., C ⊂ cl int C.
Then

lim
n→∞

1
n

logµn(ω ∈ En : Lωn ∈ C) = − inf
ν∈C

D(ν |µ) .

Sanov’s theorem provides just a glimpse into large deviation theory in which (relative)
entropies of various kinds play a central role. (More on this can be found in [6] and
the contributions of den Hollander and Varadhan to this volume.) Its meaning can be
summarized as follows:

Among all realizations with histogram in C, the most probable are those hav-
ing a histogram closest to µ in the sense of relative entropy.

We will return to this point later in (5.3). Needless to say, Sanov’s theorem can be
extended to quite general state spaces E, see [4] or Theorem 6.2.10 of [6].

4 Entropy maximization under constraints

The second law of thermodynamics asserts that a physical system in equilibrium has
maximal entropy among all states with the same energy. Translating this into a proba-
bilistic language and replacing entropy by the more general relative entropy, we are led
to the following question:

Let C be a class of probability measures on some measurable space (E, E)
and µ a fixed reference measure on (E, E). What are then the probability
measures in C minimizing D( · |µ)?

The universal significance of such minimizers has been put forward by Jaynes [19, 20]. As
noticed above, they come up also in the context of Sanov’s theorem (3.4). In the present
more general setting, the relative entropy can be defined by D(ν |µ) = supP D(νP |µP),
where the supremum extends over all finite E-measurable partitions P and νP stands for
the restriction of ν to P. Equivalently, D(ν |µ) = ν(log f) if ν is absolutely continuous
with respect to µ with density f , and D(ν |µ) = ∞ otherwise; see Corollary (15.7) of
[13], for example. (For a third expression see (4.1) below.) The first definition shows
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in particular that D( · |µ) is lower semicontinuous in the so-called τ -topology generated
by the mappings ν → ν(A) with A ∈ E . Consequently, a minimizer does exist whenever
C is closed in this topology. If C is also convex, the minimizer is uniquely determined
due to the strict convexity of D( · |µ), and is then called the I-projection of µ on C. We
consider here only the most classical case when C is defined by an integral constraint.
That is, writing ν(g) for the integral of some bounded measurable function g : E → R

d

with respect to ν, we assume that C = {ν : ν(g) = a} for suitable a ∈ Rd. In other
words, we consider the constrained variational problem

D(ν |µ) != min , ν(g) = a .

In this case one can use a convex Lagrange multiplier calculus as follows.
For any bounded measurable function f : E → R let P (f) = logµ(ef ) be the

log-Laplace functional of µ. One then has the variational formula

D(ν |µ) = sup
f

[ ν(f)− P (f) ] ,(4.1)

meaning that D( · |µ) and P are convex conjugates (i.e., Legendre-Fenchel transforms)
of each other; cf. Lemma 6.2.13 of [6]. Let

Jg(a) = inf
ν: ν(g)=a

D(ν |µ)

be the “entropy distance” of {ν : ν(g) = a} from µ. A little convex analysis then shows
that

Jg(a) = sup
t∈Rd

[t · a− P (t · g)] ,(4.2)

i.e., Jg is a partial convex conjugate of P (or, in other terms, the Cramér transform of
the distribution µ ◦ g−1 of g under µ). Moreover, if g is non-degenerate (in the sense
that µ ◦ g−1 is not supported on a hyperplane) then Jg is differentiable on the interior
Ig = int{Jg <∞} of its essential domain, and one arrives at the following

(4.3) Gibbs-Jaynes principle: For any non-degenerate g : E → R
d, a ∈ Ig and

t = ∇Jg(a), the probability measure

µt(dx) = Z−1
t et·g(x) µ(dx)

on (E, E) is the unique minimizer of D( · |µ) on {ν : ν(g) = a}. Here Zt = eP (t·g) is
the normalizing constant.

Generalized versions of this result can be found in [3, 4] or Example (9.42) of [37].
In Statistical Mechanics, the measures µt of the form above are called Gibbs distri-

butions, and the preceding result (or a suitable extension) justifies that these are indeed
the equilibrium distributions of physical systems satisfying a finite number of conser-
vation laws. In Mathematical Statistics, such classes of probability measures are called
exponential families. Here are some familiar examples from probability theory.

(4.4) Example: Let E = R
d, µ the standard normal distribution on E, and for any

positive definite symmetric matrix C let µC be the centered normal distribution with co-
variance matrix Cov(µC) = C. Then µC minimizes the relative entropy D( · |µ) among
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all centered distributions ν with covariance matrix C. Equivalently, µC maximizes the
differential entropy

H(ν) =
{
−
∫
dx f(x) log f(x) if ν has Lebesgue-density f ,
−∞ otherwise

in the same class of distributions, and H(µC) = d
2 log[2πe(detC)1/d].

(4.5) Example: Let E = [0,∞[, a > 0 and µa be the exponential distribution
with parameter a. Then ν = µa minimizes D(ν |µ1) resp. maximizes H(ν) under the
condition ν(id) = 1/a.

(4.6) Example: Let E = N, a > 0 and µa be the Poisson distribution with parameter
a. Then ν = µa minimizes D(ν |µ1) under the condition ν(id) = a, and D(µa |µ1) =
1− a+ a log a.

(4.7) Example: Let E = C[0, 1], a ∈ E and µa the image of the Wiener measure
µ0 = µ under the shift x → x + a of E. Then ν = µa minimizes D(ν |µ) under the
condition ν(id) = a, and D(µa |µ) = 1

2

∫ 1
0 ȧ(t)2 dt if a is absolutely continuous with

derivative ȧ, and D(µa |µ) =∞ otherwise; see e.g. Section II.1.1 of [11].

5 Asymptotics governed by entropy

We will now turn to the dynamical aspects of the second law of thermodynamics. As
before, we will not enter into a physical discussion of this fundamental law. Rather we
will show by examples that the principle of increasing entropy (or decreasing relative
entropy) stands also behind a number of well-known facts of probability theory.

Our first example is the so-called ergodic theorem for Markov chains. Let E be a
finite set and Pt = etG, t ≥ 0, the transition semigroup for a continuous-time Markov
chain on E. The generator G is assumed to be irreducible. It is well-known that there is
then a unique invariant distribution µ (satisfying µPt = µ for all t ≥ 0 and, equivalently,
µG = 0). Let ν be any initial distribution, and νt = νPt be the distribution at time t.
Consider the relative entropy D(νt |µ) as a function of time t ≥ 0. A short computation
(using the identities µG = 0 and G1 = 0) then gives the following result:

(5.1) Entropy production of Markov chains: For any t ≥ 0 we have

d

dt
D(νt |µ) = −

∑
x,y∈E:x 6=y

νt(y) Ḡ(y, x) ϕ
(
νt(x)µ(y)
µ(x) νt(y)

)
= − a(νt) D(ν̃t | ν̄t) ≤ 0 ,

and in particular d
dt D(νt |µ) < 0 when νt 6= µ.

In the above, Ḡ(y, x) = µ(x)G(x, y)/µ(y) is the generator for the time-reversed chain,
ϕ(s) = 1−s+s log s ≥ 0 for s ≥ 0, a(ν) = −

∑
x∈E ν(x)G(x, x) > 0, and the probability

measures ν̃ and ν̄ on E × E are defined by ν̃(x, y) = ν(x)G(x, y)(1 − δx,y)/a(ν) and
ν̄(x, y) = ν(y) Ḡ(y, x)(1 − δx,y)/a(ν), x, y ∈ E. The second statement follows from the
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fact that 1 is the unique zero of ϕ, and G is irreducible. A detailed proof can be found
in Chapter I of Spitzer [36]. The discrete time analogue was apparently discovered
repeatedly by various authors; it appears e.g. in [32] and on p. 98 of [23].

The entropy production formula above states that the relative entropy D( · |µ) is a
strict Lyapunov function for the fixed-time distributions νt of the Markov chain. Hence
νt → µ as t → ∞. This is the well-known ergodic theorem for Markov chains, and the
preceding argument shows that this convergence result fits precisely into the physical
picture of convergence to equilibrium.

Although the central limit theorem is a cornerstone of probability theory, it is often
not realized that this theorem is also an instance of the principle of increasing entropy.
(This is certainly due to the fact that the standard proofs do not use this observation.)
To see this, let (Xi) be a sequence of i.i.d. centered random vectors in Rd with existing
covariance matrix C, and consider the normalized sums S∗n =

∑n
i=1Xi/

√
n. By the very

definition, S∗n is again centered with covariance matrix C. But, as we have seen in Ex-
ample (4.4), under these conditions the centered normal distribution µC with covariance
matrix C has maximal differential entropy. This observation suggests that the relative
entropy may again serve as a Lyapunov function. Unfortunately, a time-monotonicity
of relative entropies seems to be unknown so far (though monotonicity along the powers
of 2 follows from a subadditivity property). But the following statement is true.

(5.2) Entropic central limit theorem: Let νn be the distribution of S∗n. If ν1 is
such that D(νn |µC) <∞ for some n, then D(νn |µC)→ 0 as n→∞.

This theorem traces back to Linnik [27], whose result was put on firm grounds by Barron
[1]. The multivariate version above is due to [21]. By an inequality of Pinsker, Csiszár,
Kullback and Kemperman (cf. p. 133 of [11] or p. 58 of [5]), it follows that νn → µC in
total variation norm (which is equal to the L1-distance of their densities).

A similar result holds for sums of i.i.d. random elements Xi of a compact group G.
Let µG denote the normalized Haar measure on G, and let νn be the distribution of∑n

i=1Xi, i.e., the n-fold convolution of the common distribution of the Xi. A recent
result of Johnson and Suhov [22] then implies that D(νn |µG) ↓ 0 as n ↑ ∞, provided
D(νn |µG) is ever finite. Note that µG is the measure of maximal entropy (certainly if
G is finite or a torus), and that the convergence here is again monotone in time.

Our third example is intimately connected to Sanov’s theorem (3.4). Suppose again
(for simplicity) that E is finite, and let µ be a probability measure on E. Let C be a
closed convex class of probability measures on E such that int C 6= ∅. We consider the
conditional probability

µnC = µn( · |{ω ∈ En : Lωn ∈ C})

under the product measure µn given that the empirical distribution belongs to the class
C. (By Sanov’s theorem, this condition has positive probability when n is large enough.)
Do these conditional probabilities converge to a limit? According to the interpretation
of Sanov’s theorem, the most probable realizations ω are those for which D(Lωn |µ) is as
small as possible under the constraint Lωn ∈ C. But we have seen above that there exists
a unique probability measure µ∗ ∈ C minimizing D( · |µ), namely the I-projection of µ
on C. This suggests that, for large n, µnC concentrates on configurations ω for which Lωn
is close to µ∗. This and even more is true, as was shown by Csiszár (5.3).
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(5.3) Csiszár’s conditional limit theorem: For closed convex C with non-empty
interior,

µn( · |{ω ∈ En : Lωn ∈ C})→ µN∗ as n→∞ ,

where µ∗ is the I-projection from µ on C.

Note that the limit is again determined by the maximum entropy principle. It is remark-
able that this result follows from purely entropic considerations. Writing νC,n = µnC(L

·
n)

for the mean conditional empirical distribution (which by symmetry coincides with the
one-dimensional marginal of µnC), Csiszár (5.3) observes that

− 1
n

logµn(ω ∈ En : Lωn ∈ C) =
1
n
D(µnC |µn)

=
1
n
D(µnC | (νC,n)n) +D(νC,n |µ)

≥ 1
n
D(µnC |µn∗ ) +D(µ∗ |µ) .

The inequality can be derived from the facts that νC,n ∈ C by convexity and µ∗ is the
I-projection of µ on C. Now, by Sanov’s theorem, the left-hand side tends to D(µ∗ |µ),
whence 1

n D(µnC |µn∗ )→ 0 . In view of the superadditivity properties of relative entropy,
it follows that for each k ≥ 1 the projection of µnC onto Ek converges to µk∗, and one
arrives at (5.3).

The preceding argument is completely general: Csiszár’s original paper [4] deals with
the case when E is an arbitrary measurable space. In fact, some modifications of the
argument even allow to replace the empirical distribution Lωn by the so-called empirical
process; this will be discussed below in (6.7).

6 Entropy density of stationary processes and fields

Although occasionally we already considered sequences of i.i.d. random variables, our
main concern so far was the entropy and relative entropy of (the distribution of) a
single random variable with values in E. In this last section we will recall how the ideas
described so far extend to the set-up of stationary stochastic processes, or stationary
random fields, and our emphasis here is on the non-independent case.

Let E be a fixed state space. For simplicity we assume again that E is finite. We
consider the product space Ω = EZ

d
for any dimension d ≥ 1. For d = 1, Ω is the

path space of an E-valued process, while for larger dimensions Ω is the configuration
space of an E-valued random field on the integer lattice. In each case, the process or
field is determined by a probability measure µ on Ω. We will assume throughout that
all processes or fields are stationary resp. translation invariant, in the sense that µ is
invariant under the shift-group (ϑx)x∈Zd acting on Ω in the obvious way.

In this setting it is natural to consider the entropy or relative entropy per time resp.
per lattice site, rather than the (total) entropy or relative entropy. (In fact, D(ν|µ) is
infinite in all interesting cases.) The basic result on the existence of the entropy density
is the following. In its statement, we write Λ ↑ Zd for the limit along an arbitrary
increasing sequence of cubes exhausting Λ, µΛ for the projection of µ onto EΛ, and ωΛ

for the restriction of ω ∈ Ω to Λ.
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(6.1) Shannon-McMillan-Breiman theorem: For any stationary µ on Ω, there
exists the entropy density

h(µ) = lim
Λ↑Zd
|Λ|−1 H(µΛ) ,

and for the integrands we have

− lim
Λ↑Zd
|Λ|−1 logµΛ(ωΛ) = h(µ( · | I)(ω))

for µ-almost ω and in L1(µ). Here µ( · | I)(ω) is a regular version of the conditional
probability with respect to the σ-algebra I of shift-invariant events in Ω.

For a proof we refer to Section 15.2 of [13] (and the references therein), and Section I.3.1
of [11]. In the case of a homogeneous product measure µ = αZ

d
we have h(µ) = H(α).

In view of Boltzmann’s interpretation (1.3) of entropy, h(µ) is a measure of the lack
of knowledge about the process or field per time resp. per site. Also, the L1-convergence
result of McMillan immediately implies an asymptotic equipartition property analogous
to (2.3), whence h(µ) is also the optimal rate of a block code, and thus the information
per signal of the stationary source described by µ (provided we take the logarithm to
the base 2).

What about the existence of a relative entropy per time or per site? Here we need
to assume that the reference process has a nice dependence structure, which is also
important in the context of the maximum entropy problem.

Let f : Ω→ R be any function depending only on the coordinates in a finite subset
∆ of Zd. Such a function will be called local. A probability measure µ on Ω is called a
Gibbs measure for f if its conditional probabilities for observing a configuration ωΛ in
a finite region Λ ⊂ Zd, given a configuration ωΛc outside of Λ, are almost surely given
by the formula

µ(ωΛ |ωΛc) = ZΛ(ωΛc)−1 exp
[ ∑
x: (∆+x)∩Λ6=∅

f(ϑxω)
]
,

where ZΛ(ωΛc) is the normalization constant. Since f is local, each Gibbs measure µ
is Markovian in the sense that the conditional probabilities above only depend on the
restriction of ωΛc to a bounded region around Λ. (This assumption of finite range could
be weakened, but here is no place for this.) The main interest in Gibbs measures comes
from its use for describing systems of interacting spins in equilibrium, and the analysis
of phase transitions; a general account can be found in Georgii [13], for example. (To
make the connection with the definition given there let the potential Φ be defined as in
Lemma (16.10) of this reference.) In the present context, Gibbs measures simply show
up because of their particular dependence properties. We now can state the following
counterpart to (6.1).

(6.2) Ruelle-Föllmer theorem: Suppose µ is a Gibbs measure for some local func-
tion f , and ν is translation invariant. Then the relative entropy density

d(ν |µ) = lim
Λ↑Zd
|Λ|−1 D(νΛ |µΛ)(6.3)
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exists and is equal to p(f)− h(ν)− ν(f), where

p(f) = max
ν

[h(ν) + ν(f)] = lim
Λ↑Zd
|Λ|−1 logZΛ(ωΛc) ,(6.4)

the so-called pressure of f , is the counterpart of the log-Laplace functional appearing in
(4.3).

The second identity in (6.4) is often called the variational formula; it dates back to
Ruelle [33]. Föllmer [10] made the connection with relative entropy; for a detailed
account see also Theorem (15.30) of [13] or Section I.3.3 of [11]. An example of a non-
Gibbsian µ for which d(· |µ) fails to exist was constructed by Kieffer and Sokal, see pp.
1092–1095 of [9]. As in (6.1), there is again an L1(ν) and ν-almost sure convergence
behind (6.3) [10]. In the case f = 0 when the unique Gibbs measure µ is equal to αZ

d

for the equidistribution α on E, the Ruelle-Föllmer theorem (6.2) reduces to (6.1).
Since D(ν |µ) = 0 if and only if ν = µ, the preceding result leads us to ask what

one can conclude from the identity d(ν |µ) = 0. The answer is the following celebrated
variational characterization of Gibbs measures first derived by Lanford and Ruelle [25].
Simpler proofs were given later by Föllmer [10] and Preston, Theorem 7.1 of [30]; cf.
also Section 15.4 of [13], or Theorem (I.3.39) of [11].

(6.5) Variational principle: Suppose ν is stationary. Then ν is a Gibbs measure
for f if and only if h(ν) + ν(f) is equal to its maximum value p(f).

Physically speaking, this result means that the stationary Gibbs measures are the mini-
mizers of the free energy density ν(−f)−h(ν), and therefore describe a physical system
with interaction f in thermodynamic equilibrium.

It is now easy to obtain an analogue of the Gibbs-Jaynes principle (4.3). Let g :
Ω → R

d be any vector-valued local function whose range g(Ω) is not contained in a
hyperplane. Then for all a ∈ Rd we have in analogy to (4.2)

jg(a) ≡ − sup
ν: ν(g)=a

h(ν) = sup
t∈Rd

[t · a− p(t · g)] ,

which together with (6.5) gives us the following result, cf. Section 4.3 of [14].

(6.6) Gibbs-Jaynes principle for the entropy density: Suppose a ∈ Rd is such
that jg is finite on a neighborhood of a, and let ν be translation invariant. Then h(ν)
is maximal under the constraint ν(g) = a if and only if ν is a Gibbs measure for ta · g,
where ta = ∇jg(a).

The next topic to be discussed is the convergence to stationary measures of maximal
entropy density. The preceding Gibbs–Jaynes principle suggests that an analogue of
Csiszár’s conditional limit theorem (5.3) might hold in the present setting. This is
indeed the case, as was proved by Deuschel-Stroock-Zessin [8], Georgii [14], and Lewis-
Pfister-Sullivan [26] using suitable extensions of Sanov’s theorem (3.4). We state the
result only in the most interesting particular case.

(6.7) The equivalence of ensembles: Let C ⊂ Rd be closed and such that

inf jg(C) = inf jg(int C) = jg(a)
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for a unique a ∈ C having the same property as in (6.6). For any cube Λ in Zd let νΛ,C
be the uniform distribution on the set{

ω ∈ EΛ : |Λ|−1
∑
x∈Λ

g(ϑper
x ωΛ) ∈ C

}
,

where ϑper
x is the periodic shift of EΛ defined by viewing Λ as a torus. (The assumptions

imply that this set is non-empty when Λ is large enough.) Then, as Λ ↑ Zd, each (weak)
limit point of the measures νΛ,C is a Gibbs measure for ta · g.

In Statistical Mechanics, the equidistributions of the type νΛ,C are called microcanon-
ical Gibbs distributions, and “equivalence of ensembles” is the classical term for their
asymptotic equivalence with the (grand canonical) Gibbs distributions considered be-
fore. A similar result holds also in the context of point processes, and thus applies to
the classical physical models of interacting molecules [15].

Finally, we want to mention that the entropy approach (5.1) to the convergence of
finite-state Markov chains can also be used for the time-evolution of translation invariant
random fields. For simplicity let E = {0, 1} and thus Ω = {0, 1}Zd . We define two types
of continuous-time Markov processes on Ω which admit the Gibbs measures for a given
f as reversible measures. These are defined by their pregenerator G acting on local
functions g as

Gg(ω) =
∑
x∈Zd

c(x, ω)[g(ωx)− g(ω)]

or
Gg(ω) =

∑
x,y∈Zd

c(xy, ω)[g(ωxy)− g(ω)] ,

respectively. Here ωx ∈ Ω is defined by ωxx = 1 − ωx, ωxy = ωy for y 6= x, and ωxy is
the configuration in which the values at x and y are interchanged. Under mild locality
conditions on the rate function c the corresponding Markov processes are uniquely
defined. They are called spin-flip or Glauber processes in the first case, and exclusion
or Kawasaki processes in the second case. The Gibbs measures for f are reversible
stationary measures for these processes as soon as the rate function satisfies the detailed
balance condition that c(x, ω) = exp[

∑
z:x∈∆+z f(ϑzω)] does not depend on ωx, resp. an

analogous condition in the second case. The following theorem is due to Holley [17, 18];
for streamlined proofs and extensions see [29, 12, 38].

(6.8) Holley’s theorem: For any translation-invariant initial distribution ν on Ω,
the negative free energy h(νt) + νt(f) is strictly increasing in t as long as the time-t
distribution νt is no Gibbs measure for f . In particular, νt converges to the set of Gibbs
measures for f .

This result is just another instance of the principle of increasing entropy. For similar
results in the non-reversible case see [24, 28] and the contribution of C. Maes to this
volume.

Let me conclude by noting that the results and concepts of this section serve also as a
paradigm for ergodic theory. The set Ω is then replaced by an arbitrary compact metric
space with a µ-preserving continuous Zd-action (ϑx)x∈Zd . The events in a set Λ ⊂ Zd
are those generated by the transformations (ϑx)x∈Λ from a generating partition of Ω.
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The entropy density h(µ) then becomes the well-known Kolmogorov-Sinai entropy of the
dynamical system (µ, (ϑx)x∈Zd). Again, h(µ) can be viewed as a measure of the inherent
randomness of the dynamical system, and its significance comes from the fact that it is
invariant under isomorphisms of dynamical systems. Measures of maximal Kolmogorov-
Sinai entropy play again a key role. It is quite remarkable that the variational formula
(6.4) holds also in this general setting, provided the partition functions ZΛ(ωΛc) are
properly defined in terms of f and the topology of Ω. p(f) is then called the topological
pressure, and p(0) is the so-called topological entropy describing the randomness of the
action (ϑx)x∈Zd in purely topological terms. All this is discussed in more detail in the
contributions by Keane and Young to this volume.

Acknowledgment. I am grateful to A. van Enter, O. Johnson, H. Spohn and R. Lang
for a number of comments on a preliminary draft.
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