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1 Introduction

In the last years there has been some progress in establishing the existence of phase tran-
sitions for systems of point particles in Euclidean space. A few recent references are the
following. Chayes, Chayes and Kotecký [2] and Georgii and Häggström [6] used a random
cluster representation and stochastic comparison arguments to establish phase transition
in the classical two-species model of Widom and Rowlinson [17] with hard-core exclusion
between unlike particles, and in a q-species “continuum Potts” model with soft interspecies
repulsion and type-independent molecular background interaction. In the single-species
case, Johansson [10] proved a phase transition in a one-dimensional model with slowly
decaying pair interaction. More recently, Lebowitz, Mazel and Presutti [11] succeeded in
showing phase transition in two-dimensional models with long but finite range interactions
using perturbation about a mean field van der Waals limit. In all these cases, the differ-
ent Gibbs measures constructed are translation invariant. This leads us to the question of
whether translation invariance necessarily holds, i.e., under what conditions all Gibbs mea-
sures are translation invariant. (Since this is trivially the case when the Gibbs measure is
unique, the interest in this question is increased by the above examples of non-uniqueness.)

For point particle systems, translation is a continuous symmetry. So our question leads
us into the realm of Mermin-Wagner resp. Dobrushin-Shlosman theory of conservation
of continuous symmetries in two-dimensional systems. This theory was already applied
to translation invariance of continuum systems by Fröhlich and Pfister [4], and Gruber
and Martin [9]. Particles with spins and continuous spin-symmetries were considered by
Romerio [14] (in the presence of hard-cores), and Shlosman [15]. Whereas [9] used an
unverified assumption of exponential clustering, [4] and [15] relied on the superstability
estimates of Ruelle [16].

In this note we show how one can avoid the use of superstability estimates, using a
variant of Pfister’s argument in [13]. Our first result, Theorem 1, states that if the particles
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interact through a translation invariant pair interaction satisfying suitable smoothness and
decay conditions then, in two spatial dimensions, any tempered Gibbs measure is translation
invariant. We will also discuss the extension of this result to many-body interactions. Since
general (and useful) sufficient conditions in this case are somewhat tedious to obtain, we will
confine ourselves to two specific examples: soft single-species Widom-Rowlinson potentials,
and m-body potentials of convolution type.

Theorem 1 can easily be extended to particles with spins or other internal degrees of
freedom. If the internal degrees of freedom admit some continuous symmetries then, under
natural conditions on the interaction, these internal symmetries are also preserved. This
second result, Theorem 2, can be proved in essentially the same way.

Although our conditions for Theorem 2 include singular and hard-core potentials, our
argument for Theorem 1 is limited to smooth potentials. Also, we do not deal here with
rotation invariance. Technically, the main difference is that, for rotations, particles far
from the origin are moved with arbitrarily high speed. In fact, there are some arguments
indicating a possible breaking of rotation invariance in two dimensional hard-core systems,
cf. [12]. Under strong clustering assumptions, rotation invariance of Gibbs measures has
been established in [4, 9].

2 Set-up and results

2.1 Translation invariance

We consider point particles in the Euclidean plane R2. A configuration of particles is
described by a subset X ⊂ R2 which is locally finite, in that #X ∩Λ <∞ for any bounded
Λ ⊂ R2. We write X for the set of all such configurations. For any Borel set Λ ⊂ R2, we
let XΛ = X ∩ Λ be the restriction of a configuration X to Λ, and XΛ = {X ∈ X : X ⊂ Λ}
the set of all configurations in Λ.

The configuration space X is equipped with the σ-algebra F generated by the counting
variables NΛ(X) = #XΛ, where Λ runs through the bounded Borel sets in R2. If Λ ⊂ R2

then FΛ stands for the σ-algebra on X generated by the restriction mapping X → XΛ from
X to XΛ ⊂ X . As usually, the reference measure on the configuration space is the Poisson
point random field Q on (X ,F) for some fixed activity z > 0. Its projection QΛ to XΛ, for
any bounded Borel set Λ ⊂ R2 of area |Λ|, is determined by the well-known formula∫

f dQΛ = e−z|Λ| ∑
k≥0

zk

k!

∫
Λk
dx1 . . . dxk f({x1, . . . , xk})

which holds for bounded measurable functions f : XΛ → R.
Next, we introduce the translation group (ϑx)x∈R2 acting on X . For any x ∈ R2 and

X ∈ X , the translate ϑxX of X by x is defined by ϑxX = {y − x : y ∈ X}. It is evident
that the mapping (x,X) → ϑxX is measurable.

Finally, we need to introduce the concept of temperedness. We divide the plane R2 into
quadratic cells Ci = i + [−1

2 ,
1
2 [2, i ∈ L ≡ Z2 + (1

2 ,
1
2), and consider the particle numbers

Ni ≡ NCi in these cells. For any integer n ≥ 1, we further consider the box Λn = [−n, n[2

2



of area vn = 4n2, and we define the mean square cell particle number

sn(X) =
1
vn

∑
i∈Λn∩L

Ni(X)2 (1)

in Λn of any X ∈ X . According to Ruelle [16], a configuration X ∈ X is called tempered if

s∗(X) ≡ lim sup
n→∞

sn(X) <∞ . (2)

We write X ∗ for the set of all tempered configurations. Note that X ∗ belongs to the tail
σ-algebra T =

⋂
{FΛc : Λ ⊂ R2 bounded Borel}.

Our next step is to introduce the interaction between the particles. A translation in-
variant pair potential is an even measurable mapping ϕ : R2 → R such that the following
holds: For any bounded Borel set Λ ⊂ R2 and X ∈ X ∗, the Hamiltonian

HΛ(X) =
∑

{x,y}⊂X:{x,y}∩Λ6=∅
ϕ(x− y) (3)

of the configuration XΛ in Λ with boundary condition XΛc is well-defined (as the limit of
the partial sums running over {x, y} ⊂ ∆ as ∆ ↑ R2 through the net of bounded Borel
sets), and the partition function

ZΛ|XΛc =
∫

exp[−HΛ(X)]QΛ(dXΛ) (4)

is positive and finite. (In particular, ϕ vanishes at infinity.) It is well-known that these
conditions are satisfied whenever ϕ is stable and lower regular in the sense of [16].

For any such potential ϕ and any X ∈ X ∗ we can define the Gibbs distribution

GΛ|XΛc (dXΛ) = Z−1
Λ|XΛc

exp[−HΛ(X)]QΛ(dXΛ) (5)

in Λ with boundary condition XΛc .

Definition. A probability measure P on (X ,F) is called a tempered Gibbs measure for
ϕ (and z) if P (X ∗) = 1 and

P (A|FΛ) = GΛ|·(A) PΛc-almost everywhere

for any bounded Borel set Λ ⊂ R2 and A ∈ FΛ.

Sufficient conditions for the existence of tempered Gibbs measure are given in [3, 16].
These include superstability or some closely related property of the interaction. In this
note, however, we take the point of view that some way we are given a tempered Gibbs
measure, and ask whether it must be invariant under translations. The point is that this
can be decided without any use of superstability. Instead, we need some smoothness and
decay properties of ϕ which we state now.

Assumption A. ϕ is a C2–function. Its gradient ∇ϕ satisfies

|∇ϕ(x)| → 0 as |x| → ∞ , (6)
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and its Hessian Hess ϕ obeys the estimate

‖Hess ϕ(x)‖ |x|2 ≤ ψ(|x|) for all x ∈ R2 , (7)

where ‖ · ‖ is the operator norm of a matrix and ψ : [0,∞[→ [0,∞[ a decreasing function
such that

∫∞
0 ψ(r)r dr <∞.

Here is the first result of this note.

Theorem 1. Under Assumption A on the translation invariant pair potential ϕ, each
tempered Gibbs measure P for ϕ is invariant under the translation group (ϑx)x∈R2, i.e.,
P ◦ ϑx = P for all x ∈ R2.

Theorem 1 can obviously be extended to the case of particles with internal degrees of
freedom, which will be considered below in the context of internal symmetries. It can also be
extended to many-body interactions. We defrain from stating general sufficient conditions
in this case and rather treat two specific examples of many-body potentials.

Example 1. Smooth versions of the single-type Widom-Rowlinson model. For a given
measurable function u : R2 → [0,∞] with

∫
u(x) ∧ 1 dx < ∞ and any bounded Borel set

Λ ⊂ R2 we consider the Hamiltonian

HΛ(X) =
∫ (

1− exp [−
∑

x∈XΛ

u(x− y)]
)

exp [−
∑

x∈XΛc

u(x− y)] dy (8)

which obviously exists for any X ∈ X . In the special case when u(x) = ∞ for |x| ≤ δ and
u(x) = 0 otherwise, this Hamiltonian was introduced by [17] as the single-species marginal
of a two-species model with hard-core exclusion u between particles of different type. The
expression in (8) is then equal to the area of the union of δ-discs centered at the points
of XΛ, decreased by the union of δ-discs around the points of XΛc . Therefore this case
is also referred to as the area-interaction model [1]. The general case corresponds to a
(soft) interspecies repulsion with potential u, cf. [6]. With the shorthand f = 1− e−u, the
Hamiltonian (8) can be rewritten in the form

HΛ(X) =
∫ (

1−
∏

x∈XΛ

(1− f(x− y))
) ∏

x∈XΛc

(1− f(x− y))

=
∑

α⊂X:#α<∞, α∩Λ6=∅
ϕ(α)

with a translation invariant many-body interaction

ϕ(α) = (−1)#α+1
∫ ∏

x∈α

f(x− y) dy . (9)

In Section 3.4 we shall prove the following variant of Theorem 1.

Proposition 1. Consider the many-body interaction (9), where f = 1− e−u and u ≥ 0
satisfies Assumption A (with u in place of ϕ). Then, for any c ∈ R, every Gibbs measure
for the potential cϕ is (tempered and) translation invariant.
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Example 2. m-body interactions of convolution type. For any fixed integer m ≥ 2 we
consider the m-body potential

ϕ(α) =
∫
dy

∏
x∈α

f(x− y) , α ∈ X , #α = m, (10)

where f : R2 → R is measurable and such that |f(x)| ≤ ψ(|x|) for all x ∈ R2 and some
function ψ as in Assumption A. If m = 2 and f is even, we have ϕ({0, ·}) = f ∗ f . For
m = 4, such potentials have been used in [11]; compare also the potential (9) above. The
Hamiltonian in a bounded Borel set Λ ⊂ R2 is given by

HΛ(X) =
∑

α⊂X:#α=m, α∩Λ6=∅
ϕ(α) .

The estimates in Section 3.5 below will show that HΛ(X) is well-defined if X is m-tempered,
in that (2) holds with power m in place of 2 in (1). Accordingly, we can define m-tempered
Gibbs measures. The analogue of Theorem 1 in the present setting then reads as follows.

Proposition 2. Suppose ϕ is a linear combination of finitely many potentials of the
form (10), where f as above satisfies Assumption A (with f in place of ϕ), and let m∗

be the maximal m occurring. Then every m∗-tempered Gibbs measure for ϕ is translation
invariant.

2.2 Internal symmetries

Suppose now each particle carries a “mark” σ describing its type, a spin, or some other
characteristic feature. σ can be taken from an arbitrary Polish space E, equipped with a
σ-finite reference measure %. A configuration is then described by a set X ⊂ R2×E having
finitely many points in Λ × E for each bounded Λ ⊂ R2. The notations X and XΛ thus
get an obvious new meaning. The σ-algebra F on X is defined by the counting variables
X → #X ∩ (Λ×B), where Λ is a bounded Borel set in R2 and B any Borel set in E. The
(σ-finite) reference measure QΛ on XΛ is defined by the formula∫

f dQΛ =
∑
k≥0

zk

k!

∫
Λk
dx1 . . . dxk

∫
Ek
%(dσ1) . . . %(dσk) f({(x1, σ1), . . . , (xk, σk)})

for bounded measurable f : XΛ → R. Tempered configurations are defined as before.
In the following we can also deal with hard-core particles. In this case we describe their

shape by a disc {ν ≤ δ/2} for some norm ν on R2, and the notation X ∗ stands for the set

{X ∈ X : ν(x− y) > δ whenever (x, σ), (y, τ) ∈ X}

of admissible configurations, rather than the set of tempered configurations. We also intro-
duce the set

D = {(x, σ; y, τ) ∈ (R2 × E)× (R2 × E) : ν(x− y) > δ} .

In the case of no hard core we set δ = 0. With these conventions we define a (not necessarily
translation invariant) pair interaction as follows.
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A pair potential is a symmetric measurable mapping ϕ : D → R such that, for any
bounded Borel set Λ ⊂ R2 and X ∈ X ∗, the Hamiltonian

HΛ(X) =
∑

{(x,σ),(y,τ)}⊂X:{x,y}∩Λ6=∅
ϕ(x, σ; y, τ)

is well-defined, and the partition function (4) is positive and finite. Gibbs distributions and
tempered Gibbs measures are then defined as before.

We consider the situation when the internal degrees of freedom admit some continuous
symmetries. So, suppose (St)t∈R is a one-parameter family of %-preserving transformations
of E such that S0 = id and Ss ◦ St = Ss+t for all s, t ∈ R. We do not require that the
mapping t→ St is bijective. We thus might have an action of the circle group, or the action
generated by an arbitrary element of any connected Lie group such as SO(N). (St)t∈R also
acts on configurations X ∈ X via

StX = {(x, Stσ) : (x, σ) ∈ X} .

Here are our symmetry and smoothness assumptions on ϕ.

Assumption B. For all (x, σ; y, τ) ∈ D, ϕ(x, Stσ; y, Stτ) = ϕ(x, σ; y, τ) for all t ∈ R,
and the function t→ ϕ(x, σ; y, Stτ) is C2 with

d2

dt2
ϕ(x, σ; y, Stτ) |x− y|2 ≤ ψ(|x− y|)

for a decreasing function ψ : [0,∞[→ [0,∞[ satisfying
∫∞
0 ψ(r)r dr <∞.

Theorem 2. Under Assumption B on ϕ, each tempered Gibbs measure P for ϕ is
invariant under (St)t∈R.

Theorem 2 applies in particular to the case when E is the unit sphere in RN with
surface measure %, St is the rotation by the angle t around any given axis, and ϕ has the
form

ϕ(x, σ; y, τ) = J(x− y)σ · τ + χ(x− y) ,

where J, χ : R2 → R are even measurable functions such that |J(x)| |x|2 ≤ ψ(|x|) whenever
ν(x) > δ. J describes the spin coupling, and χ is a stabilizing molecular interaction. Such
a “continuum Heisenberg model” may be taken as a model of a ferrofluid; see [8] for the
case of Ising spins. Identifying antipodal points of E and replacing the scalar product σ · τ
by |σ · τ |2, for example, we get a model of a nematic liquid crystal.

Theorem 2 also applies to the case when E = R with Lebesgue measure %, Stσ = σ+ t,
and ϕ is as above with σ · τ replaced by u(σ − τ) for an even C2-function u : R → R with
bounded second derivative; we then have a continuum (harmonic or anharmonic) oscillator.
In this case the following corollary applies.

Corollary. Suppose (St)t∈R is dissipative, in that there exists a bounded measurable
function f ≥ 0 on E such that

∫
f d% > 0 and limk→∞ f ◦ Stk = 0 %-a.e. for some sequence

(tk) in R. If ϕ satisfies Assumption B, a tempered Gibbs measure for ϕ cannot exist.

Theorem 2 and its corollary are analogous to well-known results on lattice spin systems
with continuous symmetries, cf. Theorem (9.20) and Corollary (9.24) of [5].
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3 Proofs

We begin with the proof of Theorem 1; the remaining proofs follow in Sections 3.4 to 3.6.
It is sufficient to prove invariance under translations in a fixed coordinate direction a. For
definiteness we set a = (1, 0). The proof of Theorem 1 then proceeds in three stages. In
a first step, we introduce localized versions of (ϑta)t∈R, the translation flow in direction
a. Then we use Assumption A to estimate the second-order change of energy under these
localized translations in terms of the mean square cell particle numbers sn. Finally we use
the temperedness and some general arguments to complete the proof.

3.1 Localized translations

For any integer n ≥ 1, we shall define a flow (T (n)
t )t∈R on R2 such that

(T1) each T (n)
t is area preserving;

(T2) T (n)
t x = ϑtax whenever x ∈ Λn/2 and x+ ta ∈ Λn/2;

(T3) T (n)
t x = x for all x /∈ Λn and t ∈ R.

To ensure (T1) we construct (T (n)
t )t∈R as a Hamiltonian flow associated with some function

h on R2.
Let h1, h2 ∈ C3(R) be such that h1 = h′2 = 1 on [−1

2 ,
1
2 ] and h1 = h2 = 0 off ] − 1, 1 [.

For x = (x1, x2) ∈ R2 let h(x) = h1(x1)h2(x2) and v(1)(x) = (v1(x), v2(x)) the Hamiltonian
C2-vector field associated to h, i.e.,

v1(x) =
∂h

∂x2
(x) = h1(x1)h′2(x2) ,

v2(x) = − ∂h

∂x1
(x) = −h′1(x1)h2(x2) .

For the given n ≥ 1 we consider the scaled vector field

v(n)(x) = v(1)(x/n) , x ∈ R2 .

The differential equation ẋ = v(n)(x) then obviously admits global solutions and defines a
flow (T (n)

t )t∈R.
By Liouville’s theorem, (T (n)

t )t∈R satisfies (T1). Since v(n)(x) = a for x ∈ Λn/2 and
v(n)(x) = 0 when x /∈ Λn we also have (T2) and (T3). From the smoothness of v(1) we
further conclude that there exist Lipschitz constants L,L′ <∞ such that

|v(n)(x)− v(n)(y)| ≤ L

n
|x− y| (11)

and

|Dv(n)(x) v(n)(x)−Dv(n)(y) v(n)(y)| ≤ L′

n2
|x− y| (12)

for all x, y ∈ R2; here Dv(n)(x) stands for the functional matrix of v(n) at x. These two
estimates will be exploited in the next step.
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3.2 Estimate of energy change

Next we use Assumption A for estimating the change of energy under the flow (T (n)
t )t∈R

introduced above. To begin, we note that Assumption A implies in particular that

|∇ϕ(x)| |x| ≤ ψ(|x|) for all x ∈ R2 . (13)

Indeed, for any x and s > 1 we obtain from (7) and the monotonicity of ψ that

|∇ϕ(sx)−∇ϕ(x)| |x| ≤
∫ s

1
dr ‖Hess ϕ(rx)‖ |x|2

≤
∫ s

1
dr ψ(r|x|) r−2 ≤ ψ(|x|) ,

so that (13) follows from (6) by letting s → ∞. Incidentally, it follows in the same way
that ϕ is regular, in that |ϕ(x)| ≤ ψ(|x|) for all x. Together with (18) below, this shows
that the Hamiltonian (3) exists for any X ∈ X ∗. In the following it will be convenient to
stipulate that the norm | · | on R2 is the maximum norm.

The required energy estimate is stated in the following lemma. We write Hn = HΛn

for the Hamiltonian in Λn = [−n, n[2, and T
(n)
t X = {T (n)

t x : x ∈ X} for the image of a
configuration X ∈ X under T (n)

t . We also set s∗n(X) = supk≥n sk(X).

Lemma 1 There exists a constant K <∞ such that, for any n ≥ 1, |t| ≤ n and X ∈ X ∗,

1
2 Hn(T (n)

t X) + 1
2 Hn(T (n)

−t X)−Hn(X) ≤ K t2 s∗n(X) . (14)

Proof. We fix an arbitrary n ≥ 1 and write Tt and v instead of T (n)
t and v(n), respectively.

In view of (3), the left-hand side of (14) is equal to

∑
{x,y}⊂X:{x,y}∩Λn 6=∅

1
2

∫ t

−t
(t− |s|) d2

ds2
ϕ(Tsx− Tsy) ds . (15)

We thus need to estimate d2

ds2 ϕ(Tsx− Tsy) for any x, y ∈ R2 and |s| ≤ n. Writing 〈·, ·〉 for
the inner product we obtain

d

ds
ϕ(Tsx− Tsy) = 〈∇ϕ(Tsx− Tsy), v(Tsx)− v(Tsy)〉

and

d2

ds2
ϕ(Tsx− Tsy) =

〈
v(Tsx)− v(Tsy),Hess ϕ(Tsx− Tsy)[v(Tsx)− v(Tsy)]

〉
+

〈
∇ϕ(Tsx− Tsy), Dv(Tsx) v(Tsx)−Dv(Tsy) v(Tsy)

〉
,

so that∣∣∣ d2

ds2
ϕ(Tsx− Tsy)

∣∣∣ ≤ ‖Hess ϕ(Tsx− Tsy)‖ |v(Tsx)− v(Tsy)|2

+ |∇ϕ(Tsx− Tsy)| |Dv(Tsx) v(Tsx)−Dv(Tsy) v(Tsy)|

≤ L2 + L′

n2
ψ(|Tsx− Tsy|) . (16)
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In the last step we used (11) and (7) together with (12) and (13).
Next we estimate |Tsx− Tsy| from below. Using (11) we find for any s > 0

|Tsx− Tsy| − |x− y| ≤
∫ s

0
du |v(Tux)− v(Tuy)|

≤ L

n

∫ s

0
du |Tux− Tuy| ,

and therefore, by Gronwall’s lemma,

|Tsx− Tsy| ≤ |x− y| eL|s|/n .

The same inequality holds for s < 0. By time reversal we obtain

|Tsx− Tsy| ≥ |x− y| e−L|s|/n ≥ |x− y| e−L

and thus
ψ(|Tsx− Tsy|) ≤ ψ̃(|x− y|) for all |s| ≤ n ; (17)

here ψ̃(r) = ψ(re−L). Combining this with (15) and (16) we see that (14) will follow once
we have shown that ∑

{x,y}⊂X:{x,y}∩Λn 6=∅
ψ̃(|x− y|) ≤ c vn s∗n(X) (18)

for some constant c <∞. To this end we consider the tiling of the plane R2 into the cells
Ci. Let d(Ci, Cj) = (|i− j| − 1)+ be the distance of Ci and Cj in the maximum norm | · |
and ψ̃i−j = ψ̃(d(Ci, Cj)). Then the left-hand side of (18) is not larger than∑

i∈L∩Λn,j∈L

Ni(X)Nj(X) ψ̃i−j .

To estimate this term we use the (rough) inequality NiNj ≤ N2
i +N2

j . The resulting sum
then splits off into two parts containing the terms N2

i resp. N2
j . The first part is equal to

vn sn(X) ‖ψ̃‖, where
‖ψ̃‖ =

∑
j∈L

ψ̃i−j <∞

for arbitrary i ∈ L. We claim that the second part satisfies the inequality∑
i∈L∩Λn,j∈L

Nj(X)2 ψ̃i−j ≤ vn s∗n(X) [ψ(0) + 4 ‖ψ̃‖] (19)

which, together with the previous estimates, implies (18) and thereby the lemma.
To prove (19) we introduce the differences ∂ψ̃(k) = ψ̃(k − 1)− ψ̃(k) for k ≥ 1. Then

ψ̃i−j =
∑

k≥|i−j|
∂ψ̃(k) when i 6= j . (20)

Separating the terms with i = j we thus see that the left-hand side of (19) is equal to

ψ(0)vnsn(X) +
∑
k≥1

∂ψ̃(k)
∑
j∈L

Nj(X)2 #{i ∈ L ∩ Λn : |i− j| ≤ k} .
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The last cardinality vanishes unless j ∈ L∩Λn+k ⊂ L∩Λ2(n∨k), in which case it is at most
vn ∧ v′k, where v′k = (2k + 1)2 ≥ vk. The last inner sum is therefore not larger than

[vn ∧ v′k] v2(n∨k) s2(n∨k)(X) ≤ 4 vn v
′
k s∗n(X) .

This proves (19) because
∑

k≥1 ∂ψ̃(k) v′k = ‖ψ̃‖. The proof of Lemma 1 is therefore com-
plete.

3.3 Comparison of probabilities

We will now use Lemma 1 to complete the proof of Theorem 1. The key observation is
the following inequality for tempered Gibbs measures. As before, a = (1, 0). Let K be the
constant of Lemma 1.

Lemma 2 For any tempered Gibbs measure P and any t ∈ R,

1
2 P ◦ ϑta + 1

2 P ◦ ϑ−ta ≥ e−Kt2s∗P .

Proof. Suppose A ∈ F is local, in that it only depends on the configuration in a bounded
set, and let n ≥ 1 be so large that |t| ≤ n and A ∈ FΛn/2

, ϑ±taA ∈ FΛn/2
. Then, by

(T2), ϑtaA = T
(n)
t A and ϑ−taA = T

(n)
−t A. By (T1) and (T3), T (n)

±t preserves the Poisson
point random field QΛn . In view of (5) and the definition of tempered Gibbs measures,
it follows that P ◦ T (n)

±t is absolutely continuous with respect to P with Radon-Nikodym
density exp[−Hn ◦ T (n)

±t +Hn]. So we can write

1
2 P (ϑtaA) + 1

2 P (ϑ−taA) = 1
2 P (T (n)

t A) + 1
2 P (T (n)

−t A)

=
∫

A

(
1
2 exp[−Hn ◦ T (n)

t +Hn] + 1
2 exp[−Hn ◦ T (n)

−t +Hn]
)
dP

≥
∫

A
exp [− 1

2 Hn ◦ T (n)
t − 1

2 Hn ◦ T (n)
−t +Hn] dP

≥
∫

A
e−Kt2s∗n dP .

In the last two inequalities we used the convexity of the exponential function and Lemma
1. Letting n→∞ we obtain from Fatou’s lemma

1
2 P (ϑtaA) + 1

2 P (ϑ−taA) ≥
∫

A
e−Kt2s∗ dP .

As A was an arbitrary local event, the lemma thus follows from the monotone class theorem.

Lemma 2 implies Theorem 1 as follows. Suppose P is an extreme tempered Gibbs
measure, and let t ∈ R. Since s∗ < ∞ with P -probability 1, we conclude from Lemma 2
that P � 1

2 P ◦ ϑta + 1
2 P ◦ ϑ−ta. On the other hand, P ◦ ϑta and P ◦ ϑ−ta are also extreme

tempered Gibbs measures. Therefore, if P ◦ ϑta 6= P then also P ◦ ϑ−ta 6= P , whence
P ◦ϑta and P ◦ϑ−ta would be singular with respect to P , cf. Theorem (7.7)(d) of [5]. Hence
1
2 P ◦ ϑta + 1

2 P ◦ ϑ−ta would be singular with respect to P . Since this is not the case, it
follows that P ◦ ϑta = P . By the extreme decomposition theorem (cf. Theorem (7.26) of
[5]), the same holds for any tempered Gibbs measure, and Theorem 1 is proved.
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3.4 Smooth Widom-Rowlinson potentials

In this subsection we prove Proposition 1. We start by noting that every Gibbs measure
for (any multiple of) the Hamiltonian (8) is tempered. This follows from the fact that
every such Gibbs measure is stochastically dominated by the Poisson point random field
Q or, in the case of a negative multiple, by the Poisson point random field for a suitably
chosen activity, cf. Examples 2.1 and 2.3 of [7]. In view of the cancellations due to the
alternating signs in the many-body interaction ϕ in (9), it is preferable to deal directly with
the Hamiltonian (8) rather than with the potential ϕ.

We consider again the localized translations (T (n)
t )t∈R. In view of (T1), we have for any

n ≥ 1
Hn(T (n)

t X) =
∫

(1− e−f(t,y)) e−g(t,y) dy ,

where
f(t, y) =

∑
x∈XΛ

u(T (n)
t x− T

(n)
t y)

and
g(t, y) =

∑
x∈XΛc

u(T (n)
t x− T

(n)
t y) .

Denoting partial derivatives with respect to t by a sub-t and estimating the exponentials
by 1 we obtain ∣∣∣ ∂2

∂t2
(1− e−f ) e−g

∣∣∣ ≤ |ftt|+ |gtt|+ (|ft|+ |gt|)2 .

In view of (T3), gt(t, y) = 0 when y /∈ Λn. Also, in analogy to (13), (16) and (17) we have
for |t| ≤ n

|ft(t, y)| ≤ L

n

∑
x∈XΛn

ψ̃(|x− y|) ,

|ftt(t, y)| ≤ L2 + L′

n2

∑
x∈XΛn

ψ̃(|x− y|) ,

and similarly for g (with Λc
n instead of Λn). We define In(x, y) = 0 for x, y /∈ Λn and

In(x, y) = 1 otherwise. Then we obtain, using the Cauchy-Schwarz inequality and (19),

∣∣∣ d2

dt2
Hn(T (n)

t X)
∣∣∣ ≤ L2 + L′

n2

∫
dy

∑
x∈X

In(x, y) ψ̃(|x− y|)

+
L2

n2

∫
dy

( ∑
x∈X

In(x, y) ψ̃(|x− y|)
)2

≤ L2 + L′

n2

∑
i∈L

∑
j∈L

Nj(X) In(i, j) ψ̃i−j

+
L2

n2

∑
i∈L

‖ψ̃‖
∑
j∈L

Nj(X)2 In(i, j) ψ̃i−j

11



≤ c

n2

∑
i∈L∩Λn,j∈L

Nj(X)2 ψ̃i−j

≤ K s∗n(X)

with suitable constants c and K. Hence, any multiple of Hn satisfies an analogue of Lemma
1, and Proposition 1 follows as in Section 3.3.

3.5 Many-body interactions of convolution type

Here we prove Proposition 2. Let ϕ be given by (10) with an f satisfying Assumption A. In
particular, (13) holds with f instead of ϕ, and |f(x)| ≤ ψ(|x|) for all x. Fixing any n ≥ 1,
we conclude from (T1) that

ϕ(T (n)
t α) =

∫
dy

∏
x∈α

f(T (n)
t x− T

(n)
t y)

for all α ∈ X with #α = m. We differentiate twice with respect to t and use (11) and (12)
together with Assumption A to estimate the f -derivatives in terms of ψ, in analogy to (16)
and (17). This gives ∣∣∣ d2

dt2
ϕ(T (n)

t α)
∣∣∣ ≤ c

n2

∫
dy

∏
x∈α

ψ̃(|x− y|)

with c = (2L2 + L′)m2. Hence, for any m-tempered X ∈ X ,

∣∣∣ d2

dt2
H(T (n)

t X)
∣∣∣ ≤ c

n2

∑
x1∈X∩Λn, x2,...,xm∈X

∫
dy

m∏
`=1

ψ̃(|x` − y|)

≤ c

n2

∑
i1∈L∩Λn, i2,...,im∈L

Ni1(X) . . . Nim(X)
∑
k∈L

m∏
`=1

ψ̃i`−k .

In view of the inequality Ni1 . . . Nim ≤ Nm
i1

+ . . . Nm
im , we therefore only need to show that,

for any 1 ≤ q ≤ m,

∑
i1∈L∩Λn, i2,...,im∈L

Niq(X)m
∑
k∈L

m∏
`=1

ψ̃i`−k ≤ c̃ vn s∗n(X) (21)

with some constant c̃ < ∞. Here s∗n = supk≥n sk, and sk is defined by (1) with power m
instead of 2.

Suppose first that q = 1. Summing first over i2, . . . , im ∈ L and then over k ∈ L we
find that the left-hand side of (21) is equal to

‖ψ̃‖m
∑

i∈L∩Λn

Ni(X)m = ‖ψ̃‖m vn sn(X) .

In the case 2 ≤ q ≤ m we can assume by symmetry that q = 2. Summing over i3, . . . , im ∈ L
we see that the left-hand side of (21) coincides with

‖ψ̃‖m−2
∑

i∈L∩Λn, j∈L

Nj(X)m
∑
k∈L

ψ̃i−k ψ̃j−k .
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Ignoring the factor ‖ψ̃‖m−2 in front we obtain for the partial sum over all terms with k = i
the expression

ψ(0)
∑

i∈L∩Λn, j∈L

Nj(X)m ψ̃j−i

which, in analogy to (19), admits an upper bound as required in (21). For the partial sum
over the terms with k 6= i we find using (20)∑

`≥1

∂ψ̃(`)
∑

k∈L∩Λn+`, j∈L

Nj(X)m ψ̃j−k #{i ∈ L ∩ Λn : |i− k| ≤ `} .

The last cardinality is at most vn ∧ v′`. By the proof of (19), the double inner sum is
dominated by a constant multiple of vn+` s∗n+`(X), which is not larger than 4 (vn∨v′`) s∗n(X).
The expression in the last display is therefore dominated by a multiple of∑

`≥1

∂ψ̃(`) vn v
′
` s∗n(X) = vn ‖ψ̃‖ s∗n(X) ,

and the proof of (21) is complete. Consequently, any finite linear combination of potentials
of the form (10) satisfies a counterpart to Lemma 1, and Proposition 2 follows as in Section
3.3.

3.6 Internal symmetries

The proof of Theorem 2 is again similar to that of Theorem 1 and, in fact, much simpler.
For any n ≥ 1, we define a localized internal symmetry group (S(n)

t )t∈R on configurations
X ⊂ R2 × E by

S
(n)
t X = {(x, Stfn(x)σ) : (x, σ) ∈ X} ,

where fn(x) = 1 ∧ (2− 2
n |x|)+ for x ∈ R2. Assumption B then implies that

d2

ds2
ϕ(x, Ssfn(x)σ; y, Ssfn(y)τ) ≤ (fn(x)− fn(y))2 |x− y|−2 ψ(|x− y|)

≤ 4
n2

ψ(|x− y|)

whenever (x, σ; y, τ) ∈ D. Just as in the proof of Lemma 1 this leads to the inequality

1
2 Hn(S(n)

t X) + 1
2 Hn(S(n)

−t X)−Hn(X) ≤ K t2 s∗n(X)

for arbitrary n ≥ 1, t ∈ R, X ∈ X ∗ and suitable K < ∞. Since QΛn is invariant under
(S(n)

t )t∈R, this implies a counterpart to Lemma 2, and Theorem 2 follows immediately.
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