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1. Gibbs measures

Seek: Model for spatial system
with many interacting components

Ex: Ferromagnet (iron, nickel)
consisting of many “spins” forming a crystal lattice

Ingredients:
e infinite lattice, e.g. Z¢< (=~ large finite lattice)
e spin orientations € finite set S

spin configuration o = (o;) iezd € SZd =: Q2

Spin dependence: prescribe conditional probabilities

Prob(o in A |n off A) = ya(o|n)
for A cc 74, o € SN\, n e SA° (consistently)

e Markovian case: vya(a|n) = va(alngn)
for OA = {d(-,A\) = 1}

e Gibbsian case: ya(o|n) o« exp[—06 Ha(on)]

for some Hamiltonian Hx and inv. temperature 3 > 0O



Ex: Isihg model: W. Lenz ’20, E. Ising 24

S={1,—-1} (up—down)

HALS) = 2 Ligze;)
(1.7}, i—j|=1

— adjacent different spins are penalized

— nearest-neigbor interaction = v Markovian

Def: Dobrushin '’68, Lanford—Ruelle 69

pon 2 Gibbs measure for v = (YA)pcczd if

p(oin A|noff A) = ya(oln) p-a.e. n
Voe SN ANccze

G = G(~) set of all Gibbs measures

equilibrium states for physical system with interaction ~




Facts:

e v (almost) Markovian = AacZ¢d YA Inpae) C G
= GF#0

e G convex ~ ex G = extremal points

o 1 € Gextremal <= ptrivialon7 = [ Fac
ACCZ4

"macroscopically deterministic”

o, veexg, uFv = pFrvonl

"macroscopically distinguishable”

epucexG = pu= lim ya(: |npc) for u-a.e. n
INVZ

“finite system approximation”

en€G = u= [ vw(dv) for a unique w
ex g
“extremal decomposition”

= any G-typical o € 2 is typical for some 1 € ex G



~» Def: Any u € ex G is called a phase.

If lexG| > 1: phase transition

"macroscopic ambivalence”

Question:

What are the driving forces giving rise

to phase transition?

Is there any stochastic mechanism relating
microscopic and macrosopic behavior of spins?

Will see:

A possible such mechanism is the

formation of infinite clusters

in suitable random graphs defined by the spins.
Such infinite clusters serve as a link

between individual and collective behavior.



2. Stochastic order (FKG-order)

S C R, £ any index set ( = 79)
= Q = S£ partially ordered:

E<n <= &<m Viezd

f:Q — Rincreasing <= f(&) < f(n) for £ <n

A C Q2 increasing <= 1 4 increasing

Def: u < v “stochastically smaller”

if u(f) <v(f) for all increasing f

Thm: Strassen 65

1 v <= dcoupling Pon 2 x 2 of i1, v

s.t. P((§,m) :£<n) =1

Pf. “<” u(f) = [ P& dn) f(&) <v(f)
{€<n} S%)
€y 2 If‘ﬁ‘ — 1,Q = S
P = distribution of (F;*(U), F,/*(U)) with U ~ Uni(0, 1)

General case: deep via Hahn—Banach O




Thm: Holley 74

1 = v whenever |L| < oo, pu,v > 0 and
ui(-18) 2viln) Vie L, £<n

Pf: Define irreducible transition matrix M on 2 x 2 by

Mi(€. ;- -) = { coupling of ;(-|£) and v;(- ) if§ < 77
pi(-1€) x vi(-|n) otherwise

and M = |£]71 Y M.
€L

Stationary distribution of M is Strassen coupling of u,v O

Cor: Fortuin, Kasteleyn, Ginibre 71

L] < oo, p>0,1i(-16) G ImVieLl, §E<n

= 1 has positive correlations, i.e.

u(fg) 2 u(f) p(g) Vincreasing f, g

Pf: Wlo.g. f >0, u(f) = 1. Define v = f p.
Then Holley’s conditions hold for u, v O

Ex: S ={0,1} = Bernoulli measure pu, stochastically

increasing in p, has positive correlations




Application to the Ising model

Lemma: £ <noffi = ~;(-|§) 2 v(|n)

PE 7i(11) =1/ (1+exp[— 5 3 &)

j€Di

1s increasing in & O

= Sandwich property: YA ¢ A cc 7%, n e SN

YA =) G ) 2va+)

Thm: Lebowitz, Martin-Lof *72

o IuT =1 lim ya(-|4+), u~ =1 1im yA(-]-) € Go
N1Z4 N1Z4

eVpueg p<Xp=pt, p,uteexg

e Each 1 € ex § has positive correlations

Cor: |G|=1 < put =pu"
— pt(o;=1)=p (o, =1) Vi

= pt(og=1)=3




3. Percolation

A. Bernoulli percolation

Broadbent—Hammersley ’57, Flory ’41:
percolation of water through porous medium

(&) ;epaiid. on {0, 1} with up(§; = 1) =p
E={iecz%:¢ =1} “open sites”

defines random subgraph of Z¢

vertex set £, edge set E(¢) = {e = {i,j} C & i —j| = 1}

Cluster of ¢ = maximal connected subset

Qu. dinfinite cluster with prob. > 07

e J threshold p. s.t.

) ) 0] p < Pec
3 infinite cluster) = for

e ip(d infinite cluster) = 1 <—= pp(0 <> c0) > 0

Pf: event increasing =- probability increasing

Kolmogorov zero-one = € {0,1} O




Non-friviality of the threshold:

d>2 = 0<pec<1

Pf: A cCcCZ® n:=d(0,0A) =
pp(0 « 00) < up(0 « HA)
< 2d(2d — 1) 1p» — 0 if(2d—1)p<1

1
= PeZ 531

Conversely: Peierls argument’33

Wlo.g. d=2.Fix A cC Z=2.
Consider Ca = A U| J{clusters hitting A}

pp(no infinite cluster hits A)

< up(0C A contains a x-circuit around A)

< N armla-pn < 1
n>[0A|

ifp > % and A is large. Hence p. < % O

Similar:

bond percolation with i.i.d. random edges




B. Invariant percolation

(&i),cza translation invariant {0, 1}-valued

Qu: How many infinite clusters?

Thm: Burton—Keane ’89

1 invariant under pZ9-translations s.t.

pu(ocin Ajnoff A) >0 Vo,n A ‘“finite energy”
= (3 < 1 infinite cluster) = 1

Pf: Wlo.g. pergodic under pZ¢ translations

N := # infinite clusters is invariant

= 3ke{0,1,...,00}st. u(N=Fk) =1

Case k = 2| For large A

1(2 infinite clusters hit A) > 0

finite energy =

(A C &, 2 infinite clusters hit A) > 0

= 2=1




Case k > 3| Say i is friple point if i € £ and

3 clusters of £ \ {7} hit 01

A; = {i is triple point }

finite energy =
w(Ag) =:26 >0

ergodic theorem = for large A\

N | =

p(AITED" 14,2 6) >
1EN
But: # triple points in A < |OA| because

= > 1a, < [ON <O A]  for large A
1EN

= () >

N



Ising model:

4. Random clusters and phase transition

Qu: For which 8> 0is |G| > 1,ie. puT # pu=?
Key: RC representation of ya (- |+):

A cube in Z¢ |

E(AN) ={e={i,j}:li—jl =1, en A # 0}
set of edges meeting A

Define RC distribution ¢ on {0, 1}¥ (N) by
da(n) oc 28 plnl(1 — py B

withp = 1—e P and k(A, n) = # clusters of (A, n)

(all clusters hitting OA joined into a single boundary cluster)

Lemma: n random ~ ¢p,

o= +1 on the boundary cluster of (/\, 7))
o +1 with prob. % indep. on each other cluster

= o ~ A\ |+)
Pf: For each o with o = + off A1 > oa(n) ma(o|n)
n
X Z 2k(Am) p|n|(1 _ p)IE(/\)\n| >—k(Amn)+1
n: n(i,5)=0 if o,7%0;

x (1 = p)ly o) oy (ol+) 0



Thm: phase transition < percolation

(oo = +1]4) = 5+ 5 #a(0 < ON)

Hence |G| > 1 <= 6 := lim ¢p(0 < IN) >0
A17.2

Holley =
e ¢ stochastically increasinginp =1 — e P
® pp = pp, whence 0 < pp(0 - 00) =0forp=0

® PN = L S Whence9>,up (0~ o00) >0
forp~1landd > 2

Aizenman, Chayes, Chayes, Newman 88 =

Thm: Phase fransition ford > 2

cop B < Be

Qu. How many phases for 3 > B.7

e For d > 3 : infinitely many (Dobrushin ’72)
e For d = 2 : only two

Thm: Russo, Aizenman, Higuchi ’79/°80

For d = 2 and all 3 > 3. G=1[p, pT]




CNPR-Theorem: Coniglio, Nappi, Peruggi, Russo ’76

pLeEG, uFEu = ,u<E| infinite —|—cluster) >0

Pf: Otherwise for any A and large A with prob. > 1 — ¢

A\

J largest T C A st. ACTIl and w=—-1onol
strong Markov property =

p=[r(|=)dp=p~ onA
A arbitrary = p<u- = p=pu"

Conclusion:

peEexG, pFEp, pt =
,u(EI both infinite 4+ and —clusters) =1

Show that this is impossible in two dimensions!




5. 2d Ising model: only two invariant phases

(Joint work with Y. Higuchi)

Buftterfly lemma:  G-almost surely 3 line s.t.

either or or both

Pf. Otherwise for some 1 € exG and any square A

w < RoT(w) on boundary of

some random region T D A

( R = reflection, 7' = spin flip )

= u=poRoTonA
Similarly: > po RoT on A

= u = po RoT for all reflections R
= p 27Z2-invariant # p=, pT
CNPR & Burfon-Keane =

p-a.s. 3 unique infinite 4+ and —clusters
Y. Zhang's argument: Positive correlations =

()l )>o




Cor: Only two periodic phases

Go=[p, ut]

Pf: Show: Infinite + and —clusters cannot coexist Go-a.s.
( = Go D = py ut+p_ pu~ with pr = p(3 inf. £cluster) )

Otherwise: butterfly lemma and finite energy =

L > 0

Poincaré recurrence =

\ /

to Burton—Keane

Cor: ut(3 +sea)=1

Pf: No coexistence of infinite +* and —* clusters O




6. 2d Ising model: no non-invariant phase

Line touching lemma (Russo):

G-almost surely, each infinite + (or 4 ) cluster in a
half-plane touches the boundary line infinitely often

Pf: Sufficient (by finite energy):
A.s. each infinite +cluster touches the boundary at least once.

*

If not: 3 separating —xpath 7~

0 > 0

This probability increases if
e 7~ * is shifted down to the horizontal axis
e + boundary conditions are imposed on the upper half-plane

e the —axis is shifted downwards ad infinitum

The limiting state is € Go and a.s. admits an infinite +cluster,
hence no infinite —cluster

But:

construction & reflection symmetry = dinfinite —cluster




Cor: Uniqueness of infinite clusters in half-planes

G-almost surely, each half-plane contains

at most one infinite 4+ (or +x*) cluster

Pf: Otherwise

to line touching

Prop. Percolation in half-planes

G-almost surely in each half-plane

either or

or

Pf: e Infinite butterflies can be shifted (random Borel-Cantelli)
e Infinite butterflies of both orientations must occur
(refinement of butterfly lemma and Poincaré recurrence,

using half-plane uniqueness in place of Burton—Keane) O




6 = ut(0 I, c0) > 0 percolation probability

Pinning lemma: If M( > =1

then for all A and x sufficiently far to the right

[ )

! >

>
A

Pf:
1
o > — for = far right
JAN 2
1 by reflection
% \ >3
2 symmetry

" ( | ) > 0 by stochastic

monotonicity




Prop: All phases are franslation invariant

Each p € ex§G is vy, -invariant

Pf: by Aizenman’s duplication trick:

—1

hor fwo layers of spins

Consider v = pu X o1

Sufficient to show:

vV A v (w,0): =1

\ /

For, this implies © < o Uy, Olr inside any A
—1
hor

and thus (by interchange of layers) u = p o

By positive correlations, reflection symmetry and friviality of
the joint fail, this follows from

0 2
vV A v 2(—)




Case A

[4-a.8.

pinning lemma, positive correlation =

( )

\ = )

(—) in first layer = first < second

Case B

—1
p-a.s. = pov -~ -a.s.

Similarly: (4) in second layer = first < second



Case C

[4-a.8.

3 unique semi-infinite contour

Similarly in the second layer

The semi-infinite contours in both layers
infersect each ofther infinitely offen

Pf: Otherwise contours eventually on one side of each other.
Symmetry = contours go eventually in parallel
But positive chance of deviations. O

pinning lemma =

\ = /
—xpath in first layer off A from x to contour intersection,
from there +x*path off A in second layer to y

= (<)x*path above A from x to y O




Epilogue: Extensions

Essential feqtures of the lattice

e planarity

e periodicity & mirror symmetry

The statement G = [, ] thus holds for the Ising model

on any such lattice, e.g.

e triangular e honeycomb

e diced e Kagomé

Open: e.g. (Z?)* (diagonal interaction)

Essential features of the inferaction

e nearest-neighbor
e FKG-attractivity

e invariance under flip—reflections

The result therefore extends to any such interaction, e.g.

e Ising model on Z? in staggered external field
<— Ising antiferromagnet for arbifrary field h € R

e hard-core lattice gas on Z?

(though finite-energy does not hold)

Open: e.g. Widom—Rowlinson lattice gas



