Normalization by Evaluation for Martin-Löf Type Theory

Andreas Abel1
Thierry Coquand2 Peter Dybjer2

1Ludwig-Maximilians-University Munich
2Chalmers University of Technology

Buchholz-Fest
Munich
5 April 2008
My Talk

- Dependent type theory basis for theorem provers (functional programming languages) Agda, Coq, Epigram, ...

- Intensional theory with predicative universes.

- Judgemental $\beta\eta$-equality.

- Deciding type equality with Normalization-By-Evaluation.

- Semantic proof of decidability of typing.
Dependent Types

- Dependent function space:

 \[
 r : \Pi x : A. B[x] \quad s : A \\
 r \; s : B[s]
 \]

- Types contain terms, type equality non-trivial.
- Shape of types can depend on terms:

 \[
 \text{Vec} \; A \; n = A \times \cdots \times A
 \]

 \[
 \text{Vec} A n = \underbrace{A \times \cdots \times A}_{n \text{ factors}}
 \]

- Type conversion rule:

 \[
 \frac{t : A}{t : B} \quad A \simeq B
 \]

- Deciding type checking requires injectivity of \(\Pi \)

 \[
 \Pi x : A. B \simeq \Pi x : A'. B' \text{ implies } A \simeq A' \text{ and } B \simeq B'
 \]
Untyped β-Equality

- One solution: $A \simeq B$ iff A, B have common β-reduct.
- Confluence of β makes \simeq transitive.
- Injectivity of Π trivial.
- But we want also η! E.g.
 - Theorem prover should not distinguish between $P(\lambda x. f \, x)$ and $P \, f$,
 - or between two inhabitants of a one-element type.
- The stronger the type equality, the more (sound) programs are accepted by the type checker.
Untyped $\beta\eta$-Equality

- Try: $A \equiv B$ iff A, B have common $\beta\eta$-reduct.

- $\beta\eta$-reduction (with surjective pairing) only confluent on strongly normalizing terms

- Proof of s.n. requires model construction

- ... which requires invariance of interpretation under reduction

- ... which requires subject reduction

- ... which requires strengthening

- ... hard to prove for pure type systems (van Benthem 1993)

- Even for untyped β, model construction difficult: Miquel Werner 2002: The not so simple proof-irrelevant model of CC
Typed $\beta\eta$-Equality

- Introduce equality judgement $\vdash A = B$.
- Relies on term equality $\vdash t = t' : C$.
- Natural for η-laws, like $\vdash t = t' : 1$.
- Now injectivity of Π is hard.

Goguen 1994: Typed Operational Semantics for UTT.
 - “Syntactical” model.
 - Shows confluence, subject reduction, normalization in one go.
 - Impressive, technically demanding work.

This work: simpler argument, in the same spirit.

Deciding judgemental equality

Normalization function $\text{nf}^A(t)$.

- Completeness:
 $\vdash t = t' : A$ implies $\text{nf}^A(t) = \text{nf}^A(t')$ (syntactically equal).

- Soundness:
 $\vdash t : A$ implies $\vdash t = \text{nf}^A(t) : A$.
Syntax of Terms and Types

- Lambda-calculus with constants

\[r, s, t ::= c \mid x \mid \lambda x. t \mid r s \]

- \(c::= N \) type of natural numbers
 - \(z \) zero
 - \(s \) successor
 - \(\text{rec} \) primitive recursion
 - \(\text{Fun} \) function space constructor
 - \(U \) universe of small types

- \(\Pi x: A. B \) is written \(\text{Fun} A (\lambda x. B) \).
Judgements

- Essential judgements

\[\Gamma \vdash A \] \quad A \text{ is a well-formed type in } \Gamma
\[\Gamma \vdash t : A \] \quad t \text{ has type } A \text{ in } \Gamma
\[\Gamma \vdash A = A' \] \quad A \text{ and } A' \text{ are equal types in } \Gamma
\[\Gamma \vdash t = t' : A \] \quad t \text{ and } t' \text{ are equal terms of type } A \text{ in } \Gamma

- Typing of functions:

\[\Gamma, x : A \vdash t : B \quad \Gamma \vdash r : \text{Fun } A (\lambda x. B) \quad \Gamma \vdash s : A \]
\[\Gamma \vdash \lambda x. t : \text{Fun } A (\lambda x. B) \quad \Gamma \vdash r s : B[s/x] \]
Rules for Judgmental Equality

- Equality axioms:
 \[\begin{array}{c}
 \frac{\Gamma, x : A \vdash t : B \quad \Gamma \vdash s : A}{\Gamma \vdash (\lambda x. t)s = t[s/x] : B[s/x]}
 \\
 \frac{\Gamma \vdash t : \text{Fun } A(\lambda x. B)}{\Gamma \vdash (\lambda x. t x) = t : \text{Fun } A(\lambda x. B)} \quad x \not\in \text{FV}(t)
 \end{array} \]

- Computation axioms for primitive recursion.
- Congruence rules.
Small and Large Types

- Small types (sets):

\[
\begin{align*}
\Gamma & \vdash A : U \quad \Gamma, x : A \vdash B : U \\
\Gamma & \vdash A \quad \Gamma, x : A \vdash B : U \\
\Gamma & \vdash N : U
\end{align*}
\]

\[
\Gamma \vdash \text{Fun} A (\lambda x.B) : U
\]

- \(U \) includes types defined by recursion like \(\text{Vec} A n \).

- (Large) types:

\[
\begin{align*}
\Gamma & \vdash A : U \\
\Gamma & \vdash A \\
\Gamma & \vdash U
\end{align*}
\]

\[
\Gamma \vdash \text{Fun} A (\lambda x.B)
\]
Consider a (total) combinatorial algebra D with constructors N, z, s, Fun, U.

Evaluation $\llbracket t \rrbracket_\rho$: Standard.

\[
\begin{align*}
\llbracket c \rrbracket_\rho &= c \quad (c \text{ constant}) \\
\llbracket x \rrbracket_\rho &= \rho(x) \\
\llbracket r \ s \rrbracket_\rho &= \llbracket r \rrbracket_\rho \llbracket s \rrbracket_\rho \\
\llbracket \lambda x. t \rrbracket_\rho \ d &= \llbracket t \rrbracket_\rho [x \mapsto d]
\end{align*}
\]

Example: $\llbracket \text{Fun } A (\lambda x. B) \rrbracket = \text{Fun } X \ F$ where $X = \llbracket A \rrbracket$ and $F \ d = \llbracket B \rrbracket [x \mapsto d]$.

We enrich D with term variables:

Up $u \in D$ for each neutral term $u ::= x \ V$ (generalized variable).
Reification (Printing)

- Reification \(\downarrow^X d \) produces a \(\eta \)-long \(\beta \)-normal term.

\[
\begin{align*}
\downarrow^N z &= z \\
\downarrow^N (s \, d) &= s (\downarrow^N d) \\
\downarrow^N (\text{Up} \, u) &= u \\
\downarrow \text{Up} \, u' \, (\text{Up} \, u) &= u \\
\downarrow \text{Fun} \, X \, F \, f &= \lambda x. \downarrow F (\uparrow^X x) (f (\uparrow^X x)), \quad x \text{ fresh}
\end{align*}
\]

- Reflection \(\uparrow^X u \) embeds a neutral term \(u \) into \(D \), \(\eta \)-expanded.

\[
\begin{align*}
(\uparrow^\text{Fun} \, X \, F \, u) \, d &= \uparrow^F d (u \downarrow^X d) \\
\uparrow^X u &= \text{Up} \, u
\end{align*}
\]

- Normalization of closed terms \(\vdash t : A \)

\[
\text{nf}^A(t) = \downarrow^{[A]}[t].
\]
PER Model

- A PER is a symmetric and transitive relation on D.
- Small types: define a PER \mathcal{U} and a PER $[X]$ for $X \in \mathcal{U}$.

\[
\begin{align*}
N &= N \in \mathcal{U} & d = d' &\in [N] & u \text{ neutral} \\
z &= z \in [N] & s \, d = s \, d' &\in [N] & \mathord{Up} \, u = \mathord{Up} \, u \in [N] \\
u \text{ neutral} &\quad \mathord{Up} \, u = \mathord{Up} \, u \in \mathcal{U} & u, u' \text{ neutral} &\quad \mathord{Up} \, u' = \mathord{Up} \, u' \in [\mathord{Up} \, u] \\
X &= X' \in \mathcal{U} & F \, d = F' \, d' &\in \mathcal{U} \quad \text{for all } d = d' \in [X] \\
\text{Fun } X \, F &= \text{Fun } X' \, F' \in \mathcal{U} \\
f \, d = f' \, d' &\in [F \, d] \quad \text{for all } d = d' \in [X] \\
f &= f' \in [\text{Fun } X \, F]
\end{align*}
\]
Modelling Large Types

- Large types: Define PER $\mathcal{T}ype$ and extend $[\cdot]$ to $\mathcal{T}ype$.

$$\mathcal{U} \subseteq \mathcal{T}ype$$

$$X = X' \in \mathcal{T}ype \quad F \, d = F' \, d' \in \mathcal{T}ype \text{ for all } d = d' \in [X]$$

$$\text{Fun} \, X \, F = \text{Fun} \, X' \, F' \in \mathcal{T}ype$$

$$\mathcal{U} = \mathcal{U} \in \mathcal{T}ype \quad [\mathcal{U}] = \mathcal{U}$$

- PERs contain only total elements of \mathcal{D}.
- These can be printed (converted to terms).
Checking Semantic Equality

Lemma

Let $X = X' \in \text{Type}$.

1. $\uparrow^X u = \uparrow^{X'} u \in [X]$.
2. If $d = d' \in [X]$ then $\downarrow^X d =_\alpha \downarrow^{X'} d'$.

Proof.

Simultaneously by induction on $X = X' \in \text{Type}$. □
Completeness of NbE

Theorem (Validity of judgements in PER model)

Let $\rho(x) = \rho'(x) \in \llbracket \Gamma(x) \rrbracket_\rho$ for all x.

- If $\Gamma \vdash t : A$ then $\llbracket t \rrbracket_\rho = \llbracket t \rrbracket_{\rho'} \in \llbracket A \rrbracket_\rho$.
- If $\Gamma \vdash t = t' : A$ then $\llbracket t \rrbracket_\rho = \llbracket t' \rrbracket_{\rho'} \in \llbracket A \rrbracket_\rho$.

Corollary (Completeness of nf)

If $\vdash t = t' : A$ then $\text{nf}^A(t) =_\alpha \text{nf}^A(t')$.

Soundness remains: If $\vdash t : A$ then $\vdash t = \text{nf}^A(t) : A$.
Kripke Logical Relation

Relate well-typed terms modulo equality to inhabitants of PERs.

Lemma (Into and out of the logical relation)

Let \(\Gamma \vdash C \circ R X \).

1. If \(\Gamma \vdash r = u : C \) then \(\Gamma \vdash r : C \circ \uparrow^X u \in [X] \).
2. If \(\Gamma \vdash r : C \circ d \in [X] \) then \(\Gamma \vdash r = \downarrow^X d : C \).

Definition

\[
\Gamma \vdash r : C \circ d \in [X] :\iff \Gamma \vdash r = \downarrow^X d : C \quad \text{for } X \text{ base type},
\]

\[
\Gamma \vdash r : C \circ f \in [\text{Fun } X F] :\iff \\
\Gamma \vdash C = \text{Fun } A (\lambda x. B) \text{ for some } A, B \text{ and for all } \Gamma' \leq \Gamma \text{ and } \Gamma' \vdash s : A \circ d \in [X], \\
\Gamma' \vdash rs : B[s/x] \circ f d \in [F d].
\]
Soundness of NbE

- Prove the fundamental theorem.

- Corollary: $\vdash t : A$ implies $\vdash t : A \circledast \llbracket t \rrbracket \in \llbracket \llbracket A \rrbracket \rrbracket$.

- Escaping the log.rel.: $\vdash t = \downarrow^{[A]}[t] : A$.

- Hence, nf is also sound.

- Decidability of judgemental equality entails injectivity of Π.
Conclusion

- Semantic metatheory of Martin-Löf Type Theory.
- Inference rules directly justified by PER model.
- No need to prove strengthening, subject reduction, confluence, normalization.
- Future work:
 - Extend to Σ-types, singleton-types, proof-irrelevance.
 - Adopt to syntax of categories-with-families (de Bruijn indices and explicit substitutions).
Related Work

- Martin-Löf 1975: NbE for Type Theory (weak conversion)
- Martin-Löf 2004: Talk on NbE (philosophical justification)
- Danvy et al: Type-directed partial evaluation
- Altenkirch Hofmann Streicher 1996: NbE for λ-free System F
- Berger Eberl Schwichtenberg 2003: Term rewriting for NbE
- Aehlig Joachimski 2004: Untyped NbE, operationally
- Filinski Rohde 2004: Untyped NbE, denotationally
- Danielsson 2006: strongly typed NbE for LF
- Altenkirch Chapman 2007: Tait in one big step