Aufgabe 1. Seien $f, g \in \mathbb{Q}[X]$ zwei Polynome, und $h = \operatorname{ggT}(f, g) \in \mathbb{Q}[X]$. Zeigen Sie, dass h der größte gemeinsame Teiler von f und g in $\mathbb{C}[X]$ ist.

Aufgabe 2. Zeigen Sie, dass die Menge aller Primzahlen in \mathbb{N} undendlich ist (Hinweis: für Primzahlen p_1, \ldots, p_n , betrachten Sie die natürliche Zahl $1 + p_1 \cdots p_n$).

Aufgabe 3. Sei R ein Integritätsbereich und $a \in R - \{0\}$. Zeigen Sie:

 $(R/(a) \text{ ist ein Integritätsbereich}) \Longrightarrow (a \text{ ist irreduzibel}).$

Aufgabe 4. Sei $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$ der Körper mit zwei Elementen. Finden Sie alle irreduzible Polynome von Grad ≤ 4 in $\mathbb{F}_2[X]$.

Aufgabe 5. Sei R ein kommutativer Ring mit Eins, sodass jedes R-Modul frei ist. Zeigen Sie, dass R ein Körper oder der Nullring ist.

Aufgabe 6. Sei R ein kommutativer Ring mit Eins und $I \subset R$ ein Ideal. Wir nehmen an, dass das R-Modul I frei ist. Zeigen Sie, dass $I \subset R$ ein Hauptideal ist.