Lineare Algebra II – 1. Übungsblatt – Musterlösung

1. (a) Wir zeigen, dass die Spalten a_1, a_2, a_3 von A eine Orthonormalbasis des \mathbb{R}^3 bilden. Wir berechnen

$$||a_1||^2 = \frac{1}{625}(81 + 400 + 144) = 1$$

$$||a_2||^2 = \frac{1}{625}(400 + 225) = 1$$

$$||a_2||^2 = \frac{1}{625}(144 + 225 + 256) = 1$$

$$\langle a_1, a_2 \rangle = \frac{1}{625}(180 - 180) = 0$$

$$\langle a_1, a_3 \rangle = \frac{1}{625}(108 - 300 + 192) = 0$$

$$\langle a_2, a_3 \rangle = \frac{1}{625}(240 - 240) = 0.$$

Daher ist $\{a_1, a_2, a_3\}$ eine Orthonormalbasis und $A \in O(3)$. Weiters gilt

$$\det A = \frac{1}{25^3} \left(-20 \begin{vmatrix} -20 & 15 \\ 12 & 16 \end{vmatrix} + 15 \begin{vmatrix} 9 & 12 \\ -20 & 15 \end{vmatrix} \right) = \frac{1}{25^3} (10000 + 5625) = 1.$$

Daher folgt $A \in SO(3)$.

(b) Die Achse ist $\mathrm{Spann}_{\mathbb{R}}(v),$ wobe
ivein Eigenvektor zum Eigenwert 1 von
 Aist. Elementare Zeilenumformungen liefern

$$A - I = \frac{1}{25} \begin{pmatrix} -16 & 20 & 12 \\ -20 & -25 & 15 \\ 12 & -15 & -9 \end{pmatrix} \leadsto \begin{pmatrix} -16 & 20 & 12 \\ 0 & -50 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

also ist $v = (3,0,4)^t$ ein Eigenvektor zum Eigenwert 1.

Wir wissen also, dass es eine Orthonormalbasis $B = \{\frac{1}{\|v\|}v, w_2, w_3\}$ von \mathbb{R}^3 gibt, sodass

$$[L_A]_B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha, \end{pmatrix}$$

mit $\alpha \in [0, 2\pi)$. Die Matrizen A und $[L_A]_B$ sind ähnlich, also haben sie dieselbe Spur. Es gilt also

$$1 + 2\cos\alpha = \text{Spur}[L_A]_B = \text{Spur} A = \frac{9}{25} + \frac{16}{25} = 1,$$

und daher $\cos \alpha = 0$.

2. Es gilt $Q(x,y,z) = (x,y,z)A_O(x,y,z)^t$, für

$$A_Q = \begin{pmatrix} 3 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 1 \end{pmatrix}.$$

Laut Hauptachsentransformation sind $\lambda_1, \lambda_2, \lambda_3$ die Eigenwerte von A_Q . Wir berechnen diese als Nullstellen des charakteristischen Polynoms:

$$\chi_{A_Q} = \begin{vmatrix} 3 - X & -2 & 0 \\ -2 & 2 - X & -2 \\ 0 & -2 & 1 - X \end{vmatrix} = (3 - X) \begin{vmatrix} 2 - X & -2 \\ -2 & 1 - X \end{vmatrix} + 2 \begin{vmatrix} -2 & 0 \\ -2 & 1 - X \end{vmatrix}$$
$$= (3 - X)(2 - X)(1 - X) - 4(3 - X) + 2(-2)(1 - X)$$
$$= -X^3 + 6X^2 - 3X - 10 = -(X - 2)(X - 5)(X + 1).$$

Wir erhalten also $\lambda_1 = 2$, $\lambda_2 = 5$, $\lambda_3 = -1$.

Die gesuchte Drehung L ist gegeben durch $U \in SO(3)$ mit $U^t A_Q U = \operatorname{diag}(2, 5, -1)$. Die Spalten u_1, u_2, u_3 von U sind eine Orthonormalbasis von \mathbb{R}^3 aus Eigenvektoren zu $\lambda_1, \lambda_2, \lambda_3$ von A_Q . Elementare Zeilenumformungen liefern

$$A - 2I = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 0 & -2 \\ 0 & -2 & -1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & -2 & 0 \\ 0 & 0 & 0 \\ 0 & -2 & -1 \end{pmatrix}, \quad \text{also } u_1 = \frac{1}{3} \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix},$$

$$A - 5I = \begin{pmatrix} -2 & -2 & 0 \\ -2 & -3 & -2 \\ 0 & -2 & -4 \end{pmatrix} \rightsquigarrow \begin{pmatrix} -2 & -2 & 0 \\ 0 & -1 & -2 \\ 0 & 0 & 0 \end{pmatrix}, \quad \text{also } u_2 = \frac{1}{3} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix},$$

$$A + I = \begin{pmatrix} 4 & -2 & 0 \\ -2 & 3 & -2 \\ 0 & -2 & 2 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 0 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & -2 & 2 \end{pmatrix}, \quad \text{also } u_3 = \frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}.$$

Wir wählen also

$$U = \frac{1}{3} \begin{pmatrix} -2 & 2 & 1 \\ -1 & -2 & 2 \\ 2 & 1 & 2 \end{pmatrix} \in \mathcal{O}(3).$$

Da

$$\det U = \frac{1}{3^3} \left(-2 \begin{vmatrix} -2 & 2 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} + 2 \begin{vmatrix} 2 & 1 \\ -2 & 2 \end{vmatrix} \right) = \frac{1}{3^3} (12 + 3 + 12) = 1,$$

gilt $U \in SO(3)$. (Im Fall det U = -1 hätten wir u_1 durch $-u_1$ ersetzen können, um det U = 1 zu erreichen.)

Die gesuchte Drehung L ist gegeben durch $x \mapsto Ux$.

3. (a) Sei $A = \tilde{Q}\tilde{R}$ eine beliebige QR-Zerlegng von A, d.h. $\tilde{Q} \in O(n)$ bzw. $\tilde{Q} \in U(n)$ und $\tilde{R} = (\tilde{r}_{ij})_{1 \leq i,j \leq n} \in M(n,n;\mathbb{K})$ ist eine rechte obere Dreiecksmatrix. Seien a_1,\ldots,a_n die Spalten von A und $\tilde{w}_1,\ldots,\tilde{w}_n$ die Spalten von \tilde{Q} . Dann gilt

$$a_j = \sum_{i=1}^j \tilde{r}_{ij} \tilde{w}_i, \quad \text{für } 1 \le j \le n.$$
 (1)

Da $a_j \notin \operatorname{Spann}_{\mathbb{K}}(a_1, \ldots, a_{j-1}) = \operatorname{Spann}_{\mathbb{K}}(w_1, \ldots, w_{j-1})$, folgt $\tilde{r}_{jj} \neq 0$ für $1 \leq j \leq n$. (Achtung: hier wurde Induktion verwendet.) Wir modifizieren \tilde{R}, \tilde{Q} wie folgt:

Für
$$1 \le i \le n$$
:
$$\begin{cases} & \text{für } i \le j \le n, \text{ setze } r_{ij} := \frac{|\tilde{r}_{ii}|}{\tilde{r}_{ii}} \tilde{r}_{ij}, \\ & \text{setze } w_i := \frac{\tilde{r}_{ii}}{|\tilde{r}_{ii}|} \tilde{w}_i. \end{cases}$$

Dann ist auch w_1, \ldots, w_n eine Orthonormalbasis von \mathbb{K}^n , da $|\tilde{r}_{ii}/|\tilde{r}_{ii}|| = 1$. Weiters gilt $r_{ii} = 1$ für $1 \le i \le n$, und

$$a_j = \sum_{i=1}^j \tilde{r}_{ij} \frac{|\tilde{r}_{ii}|}{\tilde{r}_{ii}} \cdot \frac{\tilde{r}_{ii}}{|\tilde{r}_{ii}|} \tilde{w}_i = \sum_{i=1}^j r_{ij} w_i.$$

Wir wählen also Q als die Matrix mit Spalten w_1, \ldots, w_n und $R = (r_{ij})_{1 \leq i,j \leq n}$.

(b) Sei $A = QR = \tilde{Q}\tilde{R}$, wobei $Q, \tilde{Q} \in O(n)$ (bzw. $Q, \tilde{Q} \in U(n)$) und $R = (r_{ij}), \tilde{R} = (\tilde{r}_{ij}) \in M(n, n; \mathbb{K})$ obere Dreiecksmatrizen mit $r_{ii} > 0$ und $\tilde{r}_{ii} > 0$ für alle $1 \le i \le n$.

Seien a_1, \ldots, a_n die Spalten von A, w_1, \ldots, w_n die Spalten von Q, und $\tilde{w}_1, \ldots, \tilde{w}_n$ die Spalten von \tilde{Q} . Wir behaupten:

für alle
$$1 \le j \le n$$
 gilt
$$\begin{cases} w_j = \tilde{w}_j \\ r_{ij} = \tilde{r}_{ij} \text{ für } 1 \le i \le j. \end{cases}$$

Wir führen den Beweis per Induktion und rufen uns dazu noch einmal (1) in Erinnerung. Im Fall j=1 gilt

$$|r_{11} - r_{11}||w_1|| = ||r_{11}w_1|| = ||a_1|| = ||\tilde{r}_{11}\tilde{w}_1|| = \tilde{r}_{11}||\tilde{w}_1|| = \tilde{r}_{11},$$

und

$$w_1 = \frac{1}{r_{11}} \cdot a_1 = \frac{1}{\tilde{r}_{11}} \cdot a_1 = \tilde{w}_1.$$

Für den Induktionsschritt, gilt

$$a_j = \sum_{i=1}^{j} r_{ij} w_i = \sum_{i=1}^{j} \tilde{r}_{ij} \tilde{w}_i,$$

und wir können bereits annehmen, dass $w_i = \tilde{w}_i$ für $1 \le i \le j-1$. Es folgt

$$r_{ij} = r_{ij} \langle w_i, w_i \rangle = \langle a_j, w_i \rangle = \langle a_j, \tilde{w}_i \rangle = \tilde{r}_{ij} \langle \tilde{w}_i, \tilde{w}_i \rangle = \tilde{r}_{ij},$$

für $1 \le i \le j-1$. Weiters folgt

$$r_{jj}w_j = a_j - \sum_{i=1}^{j-1} r_{ij}w_i = a_j - \sum_{i=1}^{j-1} \tilde{r}_{ij}\tilde{w}_i = \tilde{r}_{jj}\tilde{w}_j,$$

also $|r_{jj}| = ||r_{jj}w_j|| = ||\tilde{r}_{jj}\tilde{w}_j|| = |\tilde{r}_{jj}|$. Da beide Werte nach Voraussetzung positiv sind, folgt $r_{jj} = \tilde{r}_{jj}$, also auch $w_j = \tilde{w}_j$.

4. (a) Es gilt $m \leq n$. Die Matrix $A^* \in M(n, m; \mathbb{K})$ hat auch Rang m, also gibt es $Q \in O(n)$ (bzw. $Q \in U(n)$) und eine rechte obere Dreiecksmatrix $R \in M(n, m; \mathbb{K})$, sodass $A^* = QR$. Schreibe

$$R = \begin{pmatrix} \tilde{R} \\ 0 \end{pmatrix}$$
, mit $\tilde{R} \in M(m, m; \mathbb{K})$ und $0 \in M(n - m, m; \mathbb{K})$ die Nullmatrix.

Dann gibt es eine eindeutige Lösung $z_0 \in \mathbb{K}^m$ des linearen Gleichungssystems $\tilde{R}^*z = b$.

Setze

$$x_0 := Q \cdot \begin{pmatrix} z_0 \\ 0 \end{pmatrix} \in \mathbb{K}^n,$$

dann gilt $Ax_0 = b$ und $||x_0|| = \min\{||x|| \mid x \in \mathbb{K}^n, Ax = b\}.$

(b) Es gilt Rang $\tilde{R}^* = \text{Rang } \tilde{R} = \text{Rang } R = \text{Rang } QR = \text{Rang } A^* = \text{Rang } A = m$, also gibt es ein eindeutiges $z_0 \in \mathbb{K}^m$ mit $\tilde{R}^* z_0 = b$. Für x_0 wie in (a) folgt dann

$$Ax_0 = (A^*)^* x_0 = (QR)^* x_0 = R^* Q^* x_0 = R^* Q^* Q \begin{pmatrix} z_0 \\ 0 \end{pmatrix}$$
$$= R^* \begin{pmatrix} z_0 \\ 0 \end{pmatrix} = (\tilde{R}^* \quad 0) \begin{pmatrix} z_0 \\ 0 \end{pmatrix} = \tilde{R}^* z_0 = b.$$

Sei jetzt $x \in \mathbb{K}^n$ mit Ax = b, dann folgt $R^*Q^*x = b$. Sei $y := Q^*x$, dann ||x|| = ||y|| und $R^*y = b$. Schreibe

$$y = \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}, \quad \text{mit } y_0 \in \mathbb{K}^m, \ y_1 \in \mathbb{K}^{n-m}.$$

Dann gilt

$$b = R^* y = (\tilde{R}^* \quad 0) \begin{pmatrix} y_0 \\ y_1 \end{pmatrix} = \tilde{R}^* y_0,$$

also $y_0 = z_0$. Daher

$$||x|| = ||y|| = ||\binom{y_0}{y_1}|| \ge ||\binom{y_0}{0}|| = ||\binom{z_0}{0}|| = ||Q\binom{z_0}{0}|| = ||x_0||.$$