10. Äquivalenzen zur Riemannschen Vermutung

10.1. Satz. Sei $\frac{1}{2} \le \theta < 1$. Folgende Aussagen sind gleichbedeutend:

(i) Für jedes $\varepsilon > 0$ gilt

$$\pi(x) = \operatorname{li}(x) + O(x^{\theta + \varepsilon})$$

(ii) Für jedes $\varepsilon > 0$ gilt

$$\vartheta(x) = x + O(x^{\theta + \varepsilon})$$

(iii) Für jedes $\varepsilon > 0$ gilt

$$\psi(x) = x + O(x^{\theta + \varepsilon})$$

(iv) Für jedes $\varepsilon > 0$ gilt

$$M(x) = O(x^{\theta + \varepsilon})$$

(v) RH(θ): Die Riemannsche Zetafunktion $\zeta(s)$ hat keine Nullstellen mit Re(s) > θ .

Beweis.

Die Äquivalenz (ii) ⇔ (iii) folgt aus der früher bewiesenen Tatsache, dass

$$\psi(x) = \vartheta(x) + O(x^{1/2}).$$

(ii) \Rightarrow (i). Durch partielle Integration erhält man

$$li(x) = \int_{2}^{x} \frac{du}{\log u} = \frac{u}{\log u} \Big|_{2}^{x} + \int_{2}^{x} \frac{du}{\log^{2} u}$$
$$= \frac{x}{\log x} + \int_{2}^{x} \frac{du}{\log^{2} u} + O(1).$$

Wir setzen $\vartheta(x) = x + R(x)$. Nach Voraussetzung ist $R(x) = O(x^{\theta + \varepsilon})$ für jedes $\varepsilon > 0$. Mit Abelscher partieller Summation ergibt sich

$$\pi(x) = \sum_{p \leqslant x} 1 = \sum_{p \leqslant x} \frac{\log p}{\log p}$$

$$= \frac{\vartheta(x)}{\log x} + \int_{2}^{x} \frac{\vartheta(u)}{u \log^{2} u} du$$

$$= \underbrace{\frac{x}{\log x} + \int_{2}^{x} \frac{du}{\log^{2} u}}_{\text{li}(x) + O(1)} + \underbrace{\frac{R(x)}{\log x} + \int_{2}^{x} \frac{R(u)}{u \log^{2} u} du}_{O(x^{\theta + \varepsilon})}.$$

Daraus folgt die Behauptung.

 $(i) \Rightarrow (ii)$. Durch partielle Integration erhält man

$$\int_{2}^{x} \frac{\operatorname{li}(u)}{u} du = \operatorname{li}(u) \log u \Big|_{2}^{x} - \int_{2}^{x} \frac{\log u}{\log u} du$$
$$= \operatorname{li}(x) \log x - x + O(1).$$

Wir setzen $\pi(x) = \text{li}(x) + r(x)$. Nach Voraussetzung ist $r(x) = O(x^{\theta+\varepsilon})$ für jedes $\varepsilon > 0$. Mit Abelscher partieller Summation ergibt sich

$$\vartheta(x) = \sum_{p \leqslant x} \log p = \pi(x) \log x - \int_2^x \frac{\pi(u)}{u} du$$

$$= \underbrace{\operatorname{li}(x) \log x - \int_2^x \frac{\operatorname{li}(u)}{u} du}_{x + O(1)} + \underbrace{r(x) \log x - \int_2^x \frac{r(u)}{u} du}_{O(x^{\theta + \varepsilon'})}.$$

für jedes $\varepsilon' > \varepsilon$. Daraus folgt die Behauptung.

 $\underline{\text{(iii)}} \Rightarrow \text{(v)}$. Wir betrachten die Funktion

$$F(s) := -\frac{\zeta'(s)}{\zeta(s)} - \zeta(s)$$

Für Re(s) > 1 besitzt F(s) eine Darstellung als Dirichlet-Reihe

$$F(s) = \sum_{n=1}^{\infty} \frac{\Lambda(n) - 1}{n^s} =: \sum_{n=1}^{\infty} \frac{a_n}{n^s}.$$

mit

$$A(x) := \sum_{n \le x} a_n = \sum_{n \le x} (\Lambda(n) - 1) = \psi(x) - \lfloor x \rfloor.$$

Nach Voraussetzung gilt $A(x)=O(x^{\theta+\varepsilon})$ für jedes $\varepsilon>0$. Mit Abelscher partieller Summation ergibt sich

$$\sum_{n \le x} \frac{a_n}{n^s} = \frac{A(x)}{x^s} + s \int_1^x \frac{A(u)}{u^{s+1}} du.$$

Für $\text{Re}(s) > \theta$ konvergiert die rechte Seite aufgrund der Abschätzung von A(x) für $x \to \infty$ und man erhält

$$F(s) = s \int_{1}^{\infty} \frac{A(x)}{x^{s+1}} dx$$
 für $\operatorname{Re}(s) > \theta$,

d.h. $\zeta'(s)/\zeta(s) + \zeta(s) = -F(s)$ ist holomorph für $\text{Re}(s) > \theta$, insbesondere kann $\zeta(s)$ dort keine Nullstellen haben.

 $\underline{\text{(iv)} \Rightarrow \text{(v)}}$. Diese Implikation wird analog zur Implikation (iii) \Rightarrow (v) bewiesen, die Ausführung ist sogar etwas einfacher.

Wir betrachten die Funktion $G(s) := 1/\zeta(s)$; sie besitzt für $\mathrm{Re}(s) > 1$ eine Darstellung als Dirichlet-Reihe

$$G(s) = \frac{1}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}.$$

Die Partialsummen der Koeffizienten sind

$$M(x) = \sum_{n \le x} \mu(n).$$

Nach Voraussetzung gilt $M(x)=O(x^{\theta+\varepsilon})$ für jedes $\varepsilon>0$. Mit Abelscher partieller Summation ergibt sich

$$\sum_{n \le x} \frac{\mu(n)}{n^s} = \frac{M(x)}{x^s} + s \int_1^x \frac{M(u)}{u^{s+1}} du.$$

Für $\text{Re}(s) > \theta$ konvergiert die rechte Seite aufgrund der Abschätzung von M(x) für $x \to \infty$ und man erhält

$$G(s) = s \int_{1}^{\infty} \frac{M(x)}{x^{s+1}} dx$$
 für $Re(s) > \theta$,

d.h. $1/\zeta(s)=G(s)$ ist holomorph für $\mathrm{Re}(s)>\theta,$ insbesondere kann $\zeta(s)$ dort keine Nullstellen haben.

Es fehlen noch die Beweise der Implikationen (v) \Rightarrow (iii) und (v) \Rightarrow (iv). Dazu verwenden wir Satz 8.10.

. . .