Selected Topics from Number Theory
 Problem sheet \#3

Problem 9 The sequence $\left(f_{\nu}\right)_{\nu \geqslant 0}$ of Fibonacci numbers is recursively defined by

$$
f_{0}:=0, \quad f_{1}:=1, \quad f_{n+1}:=f_{n}+f_{n-1}, \quad(n \geqslant 1) .
$$

a) Show that the limit $\lim _{n \rightarrow \infty} \frac{f_{n+1}}{f_{n}}$ exists and equals the golden ration

$$
\phi:=\frac{1+\sqrt{5}}{2} .
$$

Problem 10 (Continuation of Problem 9)
a) Show that the CF expansion of ϕ is

$$
\phi=\operatorname{cfrac}(1,1,1,1,1, \ldots)
$$

and that the n-th convergent $\frac{p_{n}}{q_{n}}$ of this continued fraction equals $\frac{f_{n+2}}{f_{n+1}}$.
b) Prove that for every constant $c>\sqrt{5}$ the inequality

$$
\left|\phi-\frac{p}{q}\right|<\frac{1}{c q^{2}}, \quad p, q \text { positive integers }
$$

has only a finite number of solutions.
Problem 11 Sylvester's sequence $\left(S_{n}\right)_{n \geqslant 0}$ is recursively defined by

$$
S_{0}:=2, \quad S_{n}:=1+\prod_{\nu=0}^{n-1} S_{\nu}, \quad(n \geqslant 1) .
$$

Hence the series begins with ($2,3,7,43,1807,3263443, \ldots$).
a) Show that the series can also be defined by

$$
S_{0}:=2, \quad S_{n+1}:=S_{n}^{2}-S_{n}+1, \quad(n \geqslant 0) .
$$

b) Prove that

$$
\sum_{n=0}^{\infty} \frac{1}{S_{n}}=1 .
$$

Hint. Show that for every $m \geqslant 1$ one has

$$
1=\sum_{n u=0}^{m-1} \frac{1}{S_{\nu}}+\frac{1}{S_{m}-1} .
$$

Problem 12 (Continuation of Problem 11)
Cahen's constant is defined by

$$
C:=\sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}}{S_{\nu}-1}
$$

a) Show that another way to define C is

$$
C:=\sum_{\nu=0}^{\infty} \frac{1}{S_{2 \nu}} .
$$

b) Consider the CF expansion $C=\operatorname{cfrac}\left(a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right)$ and prove that all coefficients a_{ν} are squares, in fact

$$
C=\operatorname{cfrac}(0,1,1,1,4,9,196,16641, \ldots) .
$$

These problems will be discussed Wednesday, May 22, 2024, 16-18 h

