Selected Topics from Number Theory
 Problem sheet \#2

Problem 5 Let $x=\operatorname{cfrac}\left(a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right)$ be the CF expansion of an irrational number x and let

$$
\frac{p_{n}}{q_{n}}=\operatorname{cfrac}\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right), \quad n \geqslant 0
$$

be its convergents. Prove

$$
\left|x-\frac{p_{n}}{q_{n}}\right|>\frac{1}{q_{n}\left(q_{n}+q_{n+1}\right)} .
$$

Problem 6 Let $\operatorname{cfrac}\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ be an infinite continued fraction with $a_{\nu} \in \mathbb{R}$ (not necessarily integers), $a_{\nu}>0$ for $\nu \geqslant 1$. Prove that the continued fraction converges iff

$$
\sum_{\nu=1}^{\infty} a_{\nu}=\infty
$$

Problem 7 Let A be the set of all irrational numbers $0<x<1$ whose decimal expansion

$$
x=\sum_{\nu=1}^{\infty} c_{\nu} 10^{-\nu}
$$

satisfies $c_{\nu} \neq 9$ for all ν. Prove that A has Lebesgue measure 0 .
Problem 8 Let M be the set of all positive integers m whose decimal representation

$$
m=\sum_{\nu=0}^{N} c_{\nu} 10^{\nu}
$$

satisfies $c_{\nu} \neq 9$ for all ν. Prove that

$$
\sum_{m \in M} \frac{1}{m}<\infty
$$

