Elliptische Funktionen und Elliptische Kurven

Lösung von Aufgabe 8

Aufgabe 8

Sei $\emptyset \neq D \subset \mathbb{C}$ ein Gebiet und $f: D \to \mathbb{C}$ eine nicht-konstante holomorphe Funktion, die in D der Differentialgleichung

$$f'(z)^2 = 4f(z)^3 - g_2f(z) - g_3 \tag{*}$$

genügt. Dabei seien $g_2 = 60G_4(\Lambda)$ und $g_3 = 140G_6(\Lambda)$ bzgl. eines Gitters $\Lambda \subset \mathbb{C}$.

a) Man beweise: Es gibt eine Konstante $a \in \mathbb{C}$, so dass

$$f(z) = \wp_{\Lambda}(z - a)$$
 für alle $z \in D$.

Die Konstante a ist modulo Λ eindeutig bestimmt.

b) Gibt es auch konstante Lösungen der Differentialgleichung (*)?

Lösungsvorschlag

a) Da f(z) nicht konstant ist, gibt es einem Punkt $z_0 \in D$, so dass $c_0 := f(z_0)$ keine Nullstelle des Polynoms

$$P(X) := 4X^3 - g_2X - g_3$$

ist. Es folgt $f'(z_0)^2 = P(f(z_0)) = P(c_0) \neq 0$.

Wir betrachten nun die holomorphe Funktion $w \mapsto P(w)$. Da $P(c_0) \neq 0$, gibt es ein $\delta > 0$, so dass die Funktion P(w) im Kreis $D_{\delta}(c_0) := \{w \in \mathbb{C} : |w - c_0| < \delta\}$ nicht verschwindet. Deshalb gibt es in $D_{\delta}(c_0)$ eine holomorphe Quadratwurzel von P(w), d.h. eine holomorphe Funktion $Q: D_{\delta}(c_0) \to \mathbb{C}$ mit $Q(w)^2 = P(w)$ für alle $w \in D_{\delta}(c_0)$. Wegen der Stetigkeit von f gibt es ein $\varepsilon > 0$, so dass $f(z) \in D_{\delta}(c_0)$ für alle $z \in D_{\varepsilon}(z_0) = \{z \in \mathbb{C} : |z - z_0| < \varepsilon\}$. In $D_{\varepsilon}(z_0)$ gilt dann $f'(z)^2 = P(f(z)) = Q(f(z))^2$, also $f'(z) = \pm Q(f(z))$. Indem wir nötigenfalls Q durch Q ersetzen, können wir o.B.d.A. annehmen, dass

$$f'(z) = Q(f(z))$$
 für alle $z \in D_{\varepsilon}(z_0)$,

insbesondere ist $f'(z_0) = Q(f(z_0)) = Q(c_0) \neq 0$.

Aus der Differentialgleichung der \wp -Funktion $\wp'(z)^2 = P(\wp(z))$ folgt, dass für jedes $a \in \mathbb{C}$ die Funktion $z \mapsto \wp(z-a)$ (außerhalb der Polstellen) ebenfalls der Differentialgleichung

 $\wp'(z-a)^2=P(\wp(z-a))$ genügt. (Zur Vereinfachung der Schreibweise haben wir den Index Λ bei \wp weggelassen.)

Wir bestimmen nun a so, dass $\wp(z_0-a)=f(z_0)=c_0$. Da die Funktion $\wp(z)-c_0$ modulo Λ eine Polstelle 2. Ordnung hat, gibt es modulo Λ zwei Stellen z_1, z_2 mit $\wp(z_1)=\wp(z_2)=c_0$. Da \wp eine gerade Funktion ist, folgt $z_2\equiv -z_1$ mod Λ . Es gibt also für a modulo Λ genau zwei Möglichkeiten, nämlich $a_{1/2}=z_0\pm z_1$. Es ist

$$\wp'(z_0 - a_1) = \wp'(-z_1) = -\wp'(z_1) = -\wp'(z_0 - a_2),$$

also

$$\wp'(z_0 - a_{1/2})^2 = P(\wp(z_0 - a_{1/2})) = P(f(z_0)) = f'(z_0)^2 \neq 0.$$

Für genau eine der beiden Zahlen a_{ν} , $\nu = 1, 2$, gilt dann $\wp'(z_0 - a_{\nu}) = f'(z_0)$. Dieses a_{ν} wählen wir als a. Es folgt nun (wie bei der Funktion f)

$$\wp'(z-a) = Q(\wp(z-a))$$
 für $z \in D_{\varepsilon}(z_0)$.

Da die Funktion Q(w) der Lipschitz-Bedingung genügt (denn sie ist nach w stetig differenzierbar), ist die Lösung der Differentialgleichung

$$f'(z) = Q(f(z))$$

mit vorgegebener Anfangs-Bedingung $f(z_0) = c_0$ eindeutig bestimmt. Daraus folgt $f(z) = \wp(z-a)$ für $z \in D_{\varepsilon}(z_0)$ und wegen des Identitätssatzes für holomorphe Funtionen sogar in ganz D. Damit ist Teil a) bewiesen.

b) Bekanntlich hat das Polynom $P(X) = 4X^3 - g_2X - g_3$ die drei Nullstellen

$$e_{\nu} = \wp(\omega_{\nu}/2)$$
, wobei $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$, $\omega_3 := \omega_1 + \omega_2$.

Deshalb sind für $\nu=1,2,3$ die konstanten Funktionen $g_{\nu}(z):=e_{\nu}$ für alle $z\in\mathbb{C}$ Lösungen der Differentialgleichung

$$g'_{\nu}(z)^2 = P(g_{\nu}(z)).$$