## Riemann Surfaces

## Problem sheet \#12

## Problem 45

Let $\pi: X \rightarrow \mathbb{P}^{1}$ be the Riemann surface of $\sqrt[n]{1-z^{n}}$, i.e., of the algebraic function defined by the polynomial

$$
w^{n}+z^{n}-1 \in \mathcal{M}\left(\mathbb{P}^{1}\right)[w], \quad \mathcal{M}\left(\mathbb{P}^{1}\right) \cong \mathbb{C}[z] .
$$

Prove that the genus of $X$ is

$$
g=\frac{(n-1)(n-2)}{2} .
$$

## Problem 46

Let $P(z)=\prod_{j=1}^{4}\left(z-a_{j}\right) \in \mathbb{C}[z]$ be a polynomial of degree 4 with pairwise distinct roots $a_{1}, \ldots, a_{4} \in \mathbb{C}$ and let $\pi: X \rightarrow \mathbb{P}^{1}$ be the Riemann surface of $\sqrt[3]{P(z)}$, i.e., of the algebraic function defined by the polynomial

$$
w^{3}-P(z) \in \mathcal{M}\left(\mathbb{P}^{1}\right)[w], \quad \mathcal{M}\left(\mathbb{P}^{1}\right) \cong \mathbb{C}(z)
$$

Prove that the genus of $X$ equals 3 and that the differential forms

$$
\sigma_{1}:=\frac{d z}{w}, \quad \sigma_{2}:=\frac{d z}{w^{2}}, \quad \sigma_{3}:=\frac{z d z}{w^{2}}
$$

are holomorphic on $X$ and constitute a basis of $\Omega(X)$.

## Problem 47

On a compact Riemann surface $X$ let $\mathcal{Q} \subset \mathcal{M}^{(1)}$ be the sheaf of all meromorphic 1-forms $\omega$ on $X$ having residue 0 at every pole of $\omega$. Recall (cf. Problem 26b) that there is a short exact sequence of sheaves $0 \longrightarrow \mathbb{C} \longrightarrow \mathcal{M} \xrightarrow{d} \mathcal{Q} \longrightarrow 0$.
a) Prove that there is an isomomorphism

$$
H^{1}(X, \mathbb{C}) \cong \mathcal{Q}(X) / d \mathcal{M}(X)
$$

b) Suppose $X=\mathbb{C} / \Lambda$, with a lattice $\Lambda \subset \mathbb{C}$. Prove that on the torus $X$ the classes of

$$
\omega_{1}:=d z \quad \text { and } \quad \omega_{2}:=\wp_{\Lambda} d z
$$

form a basis of $\mathcal{Q}(X) / d \mathcal{M}(X) \cong H^{1}(X, \mathbb{C})$.

## Problem 48*

Let $X$ be a compact Riemann surface, $a \in X$, and $(U, z)$ a coordinate neighborhood of $a$ such that $z(a)=0$ and $z(U)=\{z \in \mathbb{C}:|z|<1\}$.
a) Let $D$ be a divisor on $X$. Prove that $\mathfrak{U}:=(U, X \backslash\{a\})$ is a Leray covering of $X$ for the sheaf $\mathcal{O}_{D}$, i.e.

$$
H^{1}\left(X, \mathcal{O}_{D}\right) \cong H^{1}\left(\mathfrak{U}, \mathcal{O}_{D}\right)
$$

b) Let $g$ be the genus of $X$. Denote by $L \subset \mathbb{C}^{2 g-1}$ the subspace of all $(2 g-1)$-tuples $\left(c_{1}, c_{2}, \ldots, c_{2 g-1}\right) \in \mathbb{C}^{2 g-1}$ such that there exists a function $f \in \mathcal{M}(X)$ which is holomorphic in $X \backslash\{a\}$ and whose principal part at $a$ is

$$
h(z)=\sum_{\nu=1}^{2 g-1} \frac{c_{\nu}}{z^{\nu}} .
$$

Prove that

$$
H^{1}(X, \mathcal{O}) \cong \mathbb{C}^{2 g-1} / L
$$

*A correct, independently worked out solution of the starred problem is rewarded by a bonus of 0.3 in the final grading.
Please turn in your solution during the lecture or by email to
forster@math.lmu.de

