Riemann Surfaces Problem sheet #11

Problem 41

Let $F: X \to Y$ be a non-constant holomorphic mapping of compact Riemann surfaces. Let $\omega \in \mathcal{M}^{(1)}(X)$ be a meromorphic differential form on X. Use Problem 40 to define the trace $\sigma := \operatorname{Tr}(\omega) \in \mathcal{M}^{(1)}(Y)$.

a) Show that

$$\sum_{x \in X} \operatorname{Res}_x(\omega) = \sum_{y \in Y} \operatorname{Res}_y(\sigma).$$

b) By representing X as a branched holomorphic covering of the Riemann sphere \mathbb{P}^1 , prove

$$\sum_{x \in X} \operatorname{Res}_x(\omega) = 0$$

Problem 42

As in Problem 19, let $p: X_3 \to \mathbb{P}^1$ be the Riemann surface of $\sqrt[3]{1-z^3}$, i.e. of the algebraic function defined by the polynomial

 $w^3 + z^3 - 1 \in \mathcal{M}(\mathbb{P}^1)[w], \qquad \mathcal{M}(\mathbb{P}^1) \cong \mathbb{C}(z).$

a) Calculate the divisor of the differential form $\omega := dw \in \mathcal{M}^{(1)}(X_3)$.

b) Calculate the trace $\operatorname{Tr}(\omega) \in \mathcal{M}^{(1)}(\mathbb{P}^1)$.

Problem 43

Let X and Y be compact Riemann surfaces. Suppose X has genus 1 and $F: X \to Y$ is a non-constant holomorphic map.

Prove that either $Y \cong \mathbb{P}^1$, or else Y has genus 1 and F is an unbranched covering map.

Problem 44

a) Let X be a compact Riemann surface of genus g > 0. Prove that for every point $a \in X$ there exists a holomorphic 1-form $\omega \in \Omega(X)$ with $\omega(a) \neq 0$.

b) Suppose that the genus of X equals 2. Let (ω_1, ω_2) be a basis of $\Omega(X)$ and define $f \in \mathcal{M}(X)$ by $\omega_1 = f\omega_2$. Show that $f : X \to \mathbb{P}^1$ is a 2-sheeted (branched) covering map.