Riemann Surfaces Problem sheet #10

Problem 37

Let D be a divisor on the Riemann sphere \mathbb{P}^1 . Prove

- (a) dim $H^0(\mathbb{P}^1, \mathcal{O}_D) = \max(0, 1 + \deg D)$
- (b) dim $H^1(\mathbb{P}^1, \mathcal{O}_D) = \max(0, -1 \deg D)$

Problem 38

Let $X = \mathbb{C}/\Lambda$ be a torus, $x_0 \in X$ a point and P the divisor with $P(x_0) = 1$ and P(x) = 0 for $x \neq x_0$.

a) Prove

$$\dim H^0(X, \mathcal{O}_{nP}) = \begin{cases} 0, & \text{for } n < 0, \\ 1, & \text{for } n = 0, \\ n, & \text{for } n \ge 1. \end{cases}$$

Hint. Use the Weierstrass \wp -function (Problem 12).

b) Calculate dim $H^1(X, \mathcal{O}_{nP})$ for all $n \in \mathbb{Z}$.

Problem 39

a) On a Riemann surface X let \mathfrak{D} be the sheaf of divisors, i.e., for $U \subset X$ open, $\mathfrak{D}(U)$ consists of all maps $D: U \to \mathbb{Z}$ such that for every compact set $K \subset U$ there are only finitely many $x \in K$ with $D(x) \neq 0$. Show that \mathfrak{D} together with the natural restriction morphisms is actually a sheaf and that

$$H^1(X,\mathfrak{D}) = 0.$$

Hint. Imitate the proof of $H^1(X, \mathcal{E}) = 0$, using a (discontinuous) integer valued partition of unity.

b) Let \mathcal{M}^* be the sheaf of invertible meromorphic functions, i.e. for $U \subset X$ open, $\mathcal{M}^*(U)$ consists of all meromorphic functions on U which do not vanish identically on any connected component of U. Let $\beta : \mathcal{M}^* \to \mathfrak{D}$ be the map which assigns to every meromorphic function $f \in \mathcal{M}^*(U)$ its divisor $(f) \in \mathfrak{D}(U)$ and let $\alpha : \mathcal{O}^* \to \mathcal{M}^*$ be the natural inclusion map.

Show that

$$0 \to \mathcal{O}^* \xrightarrow{\alpha} \mathcal{M}^* \xrightarrow{\beta} \mathfrak{D} \to 0$$

is an exact sequence of sheaves and thus there is an exact sequence of groups

$$0 \to H^0(X, \mathcal{O}^*) \longrightarrow H^0(X, \mathcal{M}^*) \longrightarrow \operatorname{Div}(X) \longrightarrow H^1(X, \mathcal{O}^*) \longrightarrow H^1(X, \mathcal{M}^*) \to 0.$$

Problem 40

Let $D^* := \{z \in \mathbb{C} : 0 < |z| < 1\}$ be the punctured unit disk and

 $p_k: D^* \longrightarrow D^*, \quad z \mapsto z^k.$

Let $\Omega(D^*)$ be the vector space of all holomorphic 1-forms on D^* . A trace mapping

$$\operatorname{Tr}: \Omega(D^*) \longrightarrow \Omega(D^*)$$

with respect to p_k is defined as follows. Since p_k is a covering map, every point $a \in D^*$ has an open neighborhood U such that $p_k^{-1}(U) = V_1 \cup \cdots \cup V_k$, where $V_j \subset D^*$ are disjoint open subsets and $p_k \mid V_j \to U$ is biholomorphic. Let $\varphi_j : U \to V_j$ be the inverse of $p_k \mid V_j$. Now for $\omega \in \Omega(D^*)$ let

$$\operatorname{Tr}(\omega) \mid U := \sum_{j=1}^{k} \varphi_j^* \omega.$$

a) Show that if $\omega \in \Omega(D^*)$ can be continued holomorphically (meromorphically) to the unit disk $D := \{z \in \mathbb{C} : |z| < 1\}$, then $\operatorname{Tr}(\omega)$ can be continued holomorphically (resp. meromorphically) to D.

b) Prove the formula

$$\operatorname{Res}_0(\operatorname{Tr}(\omega)) = \operatorname{Res}_0(\omega) \text{ for all } \omega \in \Omega(D^*).$$

c) More generally, for a 1-form

$$\omega = f(z)dz \in \Omega(D^*)$$
 with $f(z) = \sum_{n \in \mathbb{Z}} c_n z^n$

calculate explicitly $Tr(\omega)$.