Riemann Surfaces

Problem sheet \#10

Problem 37

Let D be a divisor on the Riemann sphere \mathbb{P}^{1}. Prove
(a) $\operatorname{dim} H^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{D}\right)=\max (0,1+\operatorname{deg} D)$
(b) $\operatorname{dim} H^{1}\left(\mathbb{P}^{1}, \mathcal{O}_{D}\right)=\max (0,-1-\operatorname{deg} D)$

Problem 38

Let $X=\mathbb{C} / \Lambda$ be a torus, $x_{0} \in X$ a point and P the divisor with $P\left(x_{0}\right)=1$ and $P(x)=0$ for $x \neq x_{0}$.
a) Prove

$$
\operatorname{dim} H^{0}\left(X, \mathcal{O}_{n P}\right)= \begin{cases}0, & \text { for } n<0 \\ 1, & \text { for } n=0 \\ n, & \text { for } n \geqslant 1\end{cases}
$$

Hint. Use the Weierstrass \wp-function (Problem 12).
b) Calculate $\quad \operatorname{dim} H^{1}\left(X, \mathcal{O}_{n P}\right)$ for all $n \in \mathbb{Z}$.

Problem 39

a) On a Riemann surface X let \mathfrak{D} be the sheaf of divisors, i.e., for $U \subset X$ open, $\mathfrak{D}(U)$ consists of all maps $D: U \rightarrow \mathbb{Z}$ such that for every compact set $K \subset U$ there are only finitely many $x \in K$ with $D(x) \neq 0$. Show that \mathfrak{D} together with the natural restriction morphisms is actually a sheaf and that

$$
H^{1}(X, \mathfrak{D})=0
$$

Hint. Imitate the proof of $H^{1}(X, \mathcal{E})=0$, using a (discontinuous) integer valued partition of unity.
b) Let \mathcal{M}^{*} be the sheaf of invertible meromorphic functions, i.e. for $U \subset X$ open, $\mathcal{M}^{*}(U)$ consists of all meromorphic functions on U which do not vanish identically on any connected component of U. Let $\beta: \mathcal{M}^{*} \rightarrow \mathfrak{D}$ be the map which assigns to every meromorphic function $f \in \mathcal{M}^{*}(U)$ its divisor $(f) \in \mathfrak{D}(U)$ and let $\alpha: \mathcal{O}^{*} \rightarrow \mathcal{M}^{*}$ be the natural inclusion map.

Show that

$$
0 \rightarrow \mathcal{O}^{*} \xrightarrow{\alpha} \mathcal{M}^{*} \xrightarrow{\beta} \mathfrak{D} \rightarrow 0
$$

is an exaxt sequence of sheaves and thus there is an exact sequence of groups

$$
0 \rightarrow H^{0}\left(X, \mathcal{O}^{*}\right) \longrightarrow H^{0}\left(X, \mathcal{M}^{*}\right) \longrightarrow \operatorname{Div}(X) \longrightarrow H^{1}\left(X, \mathcal{O}^{*}\right) \longrightarrow H^{1}\left(X, \mathcal{M}^{*}\right) \rightarrow 0
$$

Problem 40

Let $D^{*}:=\{z \in \mathbb{C}: 0<|z|<1\}$ be the punctured unit disk and

$$
p_{k}: D^{*} \longrightarrow D^{*}, \quad z \mapsto z^{k} .
$$

Let $\Omega\left(D^{*}\right)$ be the vector space of all holomorphic 1-forms on D^{*}. A trace mapping

$$
\operatorname{Tr}: \Omega\left(D^{*}\right) \longrightarrow \Omega\left(D^{*}\right)
$$

with respect to p_{k} is defined as follows. Since p_{k} is a covering map, every point $a \in D^{*}$ has an open neighborhood U such that $p_{k}^{-1}(U)=V_{1} \cup \cdots \cup V_{k}$, where $V_{j} \subset D^{*}$ are disjoint open subsets and $p_{k} \mid V_{j} \rightarrow U$ is biholomorphic. Let $\varphi_{j}: U \rightarrow V_{j}$ be the inverse of $p_{k} \mid V_{j}$. Now for $\omega \in \Omega\left(D^{*}\right)$ let

$$
\operatorname{Tr}(\omega) \mid U:=\sum_{j=1}^{k} \varphi_{j}^{*} \omega .
$$

a) Show that if $\omega \in \Omega\left(D^{*}\right)$ can be continued holomorphically (meromorphically) to the unit disk $D:=\{z \in \mathbb{C}:|z|<1\}$, then $\operatorname{Tr}(\omega)$ can be continued holomorphically (resp. meromorphically) to D.
b) Prove the formula

$$
\operatorname{Res}_{0}(\operatorname{Tr}(\omega))=\operatorname{Res}_{0}(\omega) \quad \text { for all } \omega \in \Omega\left(D^{*}\right)
$$

c) More generally, for a 1-form

$$
\omega=f(z) d z \in \Omega\left(D^{*}\right) \quad \text { with } \quad f(z)=\sum_{n \in \mathbb{Z}} c_{n} z^{n}
$$

calculate explicitely $\operatorname{Tr}(\omega)$.

