June 1, 2016

Riemann Surfaces

Problem sheet #7

Problem 25

Let X be a Riemann surface and let \mathcal{O} and Ω be the sheaves of holomorphic functions (resp. holomorphic differential 1-forms) on X. Prove that the following sequences of sheaves are exact:

(i)
$$0 \longrightarrow \mathbb{C} \longrightarrow \mathcal{O} \xrightarrow{d} \Omega \longrightarrow 0$$
,

(ii)
$$1 \longrightarrow \mathbb{C}^* \longrightarrow \mathcal{O}^* \xrightarrow{d \log} \Omega \longrightarrow 0.$$

Here $d \log : \mathcal{O}^* \longrightarrow \Omega$ denotes the homomorphism $f \longmapsto \frac{df}{f}$.

Problem 26

Let X be a Riemann surface, $a \in X$ and (U, z) a coordinate neighborhood of a with z(a) = 0. A holomorphic 1-form $\omega \in \Omega(U \setminus \{a\})$ has a Laurent expansion around a with respect to this coordinate of the form

$$\omega = f dz$$
 with $f(z) = \sum_{n=-\infty}^{\infty} c_n z^n$.

The residue of ω in *a* is defined by $\operatorname{Res}_a(\omega) := c_{-1}$.

a) Show that the definition of the residue does not depend on the choice of the local coordinate.

b) Let \mathcal{Q} be the sheaf of all meromorphic 1-forms ω on X having residue 0 at every pole of ω . Show that

$$0 \longrightarrow \mathbb{C} \longrightarrow \mathcal{M} \stackrel{d}{\longrightarrow} \mathcal{Q} \longrightarrow 0$$

is a short exact sequence of sheaves.

Problem 27

Prove that the following is a short exact sequence of sheaves on a Riemann surface X.

 $0 \longrightarrow \Omega \longrightarrow \mathcal{E}^{1,0} \stackrel{d}{\longrightarrow} \mathcal{E}^{(2)} \to 0.$

Here $\mathcal{E}^{1,0}$ denotes the sheaf of smooth 1-forms of type (1,0) and $\mathcal{E}^{(2)}$ the sheaf of smooth 2-forms on X.

Problem 28

On a Riemann surface X let \mathcal{E} be the sheaf of all smooth (complex valued) functions and $\mathscr{H} \subset \mathcal{E}$ the subsheaf of harmonic functions. Prove that

$$0 \longrightarrow \mathscr{H} \longrightarrow \mathcal{E} \xrightarrow{d''d'} \mathcal{E}^{(2)} \longrightarrow 0$$

is a short exact sequence of sheaves on X.