Riemann Surfaces Problem sheet #5

Problem 17

Let $X_1 := \mathbb{C}/\Lambda_1$ and $X_2 := \mathbb{C}/\Lambda_2$ be two tori and $f: X_1 \to X_2$ be a non-constant holomorphic map with f(0) = 0.

a) Prove that there exists a constant $\alpha \in \mathbb{C}^*$ such that $\alpha \Lambda_1 \subset \Lambda_2$ and

 $f(z \mod \Lambda_1) = \alpha z \mod \Lambda_2$ for all $z \in \mathbb{C}$.

b) Show that f is an unbranched covering map and the number of sheets equals the index $[\Lambda_2 : \alpha \Lambda_1]$.

Problem 18

a) For the torus $E_i := \mathbb{C}/(\mathbb{Z} + \mathbb{Z}i)$ construct a two-sheetet holomorphic covering map $p: E_i \to E_i$ of the torus onto itself.

b) Does there exist a two-sheeted holomorphic covering map $f: E_{\varrho} \to E_{\varrho}$ for the torus $E_{\varrho} = \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\varrho)$ where $\varrho = e^{2\pi i/3}$?

Problem 19

Let $p: X_3 \to \mathbb{P}_1$ be the Riemann surface of $\sqrt[3]{1-z^3}$, i.e. of the algebraic function defined by the polynomial

 $w^3 + z^3 - 1 \in \mathcal{M}(\mathbb{P}_1)[w], \qquad \mathcal{M}(\mathbb{P}_1) \cong \mathbb{C}(z).$

Determine all branch points and critical values of p and show that there are no branch points above $\infty \in \mathbb{P}_1$.

Problem 20

On the compact Riemann surface X_3 defined in Problem 19 consider the function f := w + z.

a) Determine the poles and zeros of f.

b) Calculate the elementary symmetric functions of f with respect to $p: X_3 \to \mathbb{P}_1$.