Riemann Surfaces Problem sheet #4

Problem 13

Prove that every holomorphic map $f: \mathbb{P}_1 \to \mathbb{C}/\Lambda$ of the Riemann sphere to a torus is constant.

Hint. Use that \mathbb{P}_1 is simply connected.

Problem 14

Let X, Y, Z be locally compact Hausdorff spaces, $f: X \to Y, g: Y \to Z$ continuous maps and $h := g \circ f: X \to Z$ the composite map.

a) Which of the following implications are true, which are false?

i) f and g proper $\implies h$ proper,

ii) f and h proper $\implies g$ proper,

iii) g and h proper $\implies f$ proper.

Give proofs or counter examples.

b) How does the situation change, if f and g are additionally supposed to be surjective?

Problem 15

a) Show that every root $z \in \mathbb{C}$ of the polynomial

$$F(T) := T^n + a_1 T^{n-1} + \ldots + a_{n-1} T + a_n \in \mathbb{C}[T]$$

satisfies the estimate $|z| \leq 2 \max\{|a_k|^{1/k} : 1 \leq k \leq n\}.$

b) Let $\Phi : \mathbb{C}^n \to \mathbb{C}^n$ be the mapping defined by

 $\Phi(z_1,\ldots,z_n):=(s_k(z_1,\ldots,z_n))_{1\leqslant k\leqslant n},$

where s_k are the elementary symmetric polynomials. Prove that Φ is a proper, surjective map.

Problem 16

Let $p: Y \to X$ be an *n*-sheeted branched holomorphic covering map of compact Riemann surfaces X, Y. The trace map

 $\operatorname{Tr} = \operatorname{Tr}_{Y/X} : \mathcal{M}(Y) \to \mathcal{M}(X)$

is defined as follows: For a meromorphic function $f \in \mathcal{M}(Y)$, let $\operatorname{Tr}(f)$ be the first elementary symmetric function of f with respect to p, as defined in the course.

Show that all elementary symmetric functions of f with respect to p can be expressed polynomially in terms of $\text{Tr}(f), \text{Tr}(f^2), \ldots, \text{Tr}(f^n)$.

Give explicit formulas in the cases n = 2 and n = 3.