Riemann Surfaces

Problem sheet \#3

Problem 9

Let $f: \mathbb{P}_{1} \rightarrow \mathbb{P}_{1}$ be the holomorphic map defined by the rational function

$$
f(z):=z+\frac{1}{z}
$$

Show that f is a two-sheeted branched covering and determine all its branch points.

Problem 10

a) Prove that the tangent function defines a local homeomorphism $\tan : \mathbb{C} \rightarrow \mathbb{P}_{1}$.
b) Prove that $\tan (\mathbb{C})=\mathbb{P}_{1} \backslash\{ \pm i\}$ and that

$$
\tan : \mathbb{C} \rightarrow \mathbb{P}_{1} \backslash\{ \pm i\}
$$

is a covering map.

Problem 11

Consider the covering maps exp: $\mathbb{C} \rightarrow \mathbb{C}^{*}$ and tan: $\mathbb{C} \rightarrow \mathbb{P}_{1} \backslash\{ \pm i\}$, cf. problem 10 .
a) Show that there exists a uniquely defined biholomorphic map $f: \mathbb{C}^{*} \rightarrow \mathbb{P}_{1} \backslash\{ \pm i\}$ with $f(1)=0$ and $\lim _{z \rightarrow 0} f(z)=-i$.
b) Show that there exists a uniquely defined biholomorphic map $g: \mathbb{C} \rightarrow \mathbb{C}$ with $g(0)=0$ which makes the following diagram commutative

and use it to express the function arctan in terms of the logarithm.

Problem 12

Let $\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2} \subset \mathbb{C},\left(\omega_{1}, \omega_{2} \in \mathbb{C}\right.$ linearily independent over $\left.\mathbb{R}\right)$, be a lattice. The Weierstrass \wp-function with respect to Λ is defined by

$$
\wp_{\Lambda}(z):=\frac{1}{z^{2}}+\sum_{\omega \in \Lambda \backslash 0}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) .
$$

a) Prove that for every compact disc $K_{r}:=\{z \in \mathbb{C}:|z| \leqslant r\}$ there exists a finite subset $\Lambda_{0} \subset \Lambda$ such that $\omega \notin K_{r}$ for all $\omega \in \Lambda \backslash \Lambda_{0}$ and the series

$$
\sum_{\omega \in \Lambda \backslash \Lambda_{0}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) .
$$

converges uniformly on K_{r}. This implies that \wp_{Λ} is a meromorphic function on \mathbb{C} with poles of order two exactly at the lattice points $\omega \in \Lambda$.
b) Show that \wp_{Λ} a doubly periodic meromorphic function on \mathbb{C} with respect to Λ, i.e. $\wp_{\Lambda}(z)=\wp_{\Lambda}(z+\omega)$ for all $\omega \in \Lambda$ and all $z \in \mathbb{C}$.
Hint. Prove first that the derivative $\wp_{\Lambda}^{\prime}(z)=-2 \sum_{\omega \in \Lambda} \frac{1}{(z-\omega)^{3}}$ is doubly periodic.
c) Since \wp_{Λ} is periodic with respect to Λ, it defines a holomorphic map $\mathbb{C} / \Lambda \rightarrow \mathbb{P}_{1}$. Prove that this map is a two-sheeted branched covering map with exactly 4 branch points at

$$
[0],\left[\frac{\omega_{1}}{2}\right],\left[\frac{\omega_{2}}{2}\right],\left[\frac{\omega_{1}+\omega_{2}}{2}\right] \in \mathbb{C} / \Lambda .
$$

Hint. To determine the zeros of \wp_{Λ}^{\prime}, use that \wp_{Λ}^{\prime} is an odd function of z, i.e. $\wp_{\Lambda}^{\prime}(-z)=$ $-\wp_{\Lambda}^{\prime}(z)$ for all $z \in \mathbb{C}$.

