Riemann Surfaces Problem sheet #3

Problem 9

Let $f: \mathbb{P}_1 \to \mathbb{P}_1$ be the holomorphic map defined by the rational function

$$f(z) := z + \frac{1}{z}$$

Show that f is a two-sheeted branched covering and determine all its branch points.

Problem 10

- a) Prove that the tangent function defines a local homeomorphism $\tan : \mathbb{C} \to \mathbb{P}_1$.
- b) Prove that $\tan(\mathbb{C}) = \mathbb{P}_1 \setminus \{\pm i\}$ and that

 $\tan: \mathbb{C} \to \mathbb{P}_1 \smallsetminus \{\pm i\}$

is a covering map.

Problem 11

Consider the covering maps $\exp: \mathbb{C} \to \mathbb{C}^*$ and $\tan: \mathbb{C} \to \mathbb{P}_1 \setminus \{\pm i\}$, cf. problem 10.

a) Show that there exists a uniquely defined biholomorphic map $f : \mathbb{C}^* \to \mathbb{P}_1 \setminus \{\pm i\}$ with f(1) = 0 and $\lim_{z \to 0} f(z) = -i$.

b) Show that there exists a uniquely defined biholomorphic map $g: \mathbb{C} \to \mathbb{C}$ with g(0) = 0 which makes the following diagram commutative

$$\begin{array}{cccc} \mathbb{C} & \xrightarrow{g} & \mathbb{C} \\ \exp & & & \downarrow \tan \\ \mathbb{C}^* & \xrightarrow{f} & \mathbb{P}_1 \smallsetminus \{\pm i\} \end{array}$$

and use it to express the function arctan in terms of the logarithm.

Problem 12

Let $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \subset \mathbb{C}$, $(\omega_1, \omega_2 \in \mathbb{C}$ linearly independent over \mathbb{R}), be a lattice. The Weierstrass \wp -function with respect to Λ is defined by

$$\wp_{\Lambda}(z) := \frac{1}{z^2} + \sum_{\omega \in \Lambda \smallsetminus 0} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right).$$

a) Prove that for every compact disc $K_r := \{z \in \mathbb{C} : |z| \leq r\}$ there exists a finite subset $\Lambda_0 \subset \Lambda$ such that $\omega \notin K_r$ for all $\omega \in \Lambda \setminus \Lambda_0$ and the series

$$\sum_{\omega \in \Lambda \smallsetminus \Lambda_0} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right).$$

converges uniformly on K_r . This implies that \wp_{Λ} is a meromorphic function on \mathbb{C} with poles of order two exactly at the lattice points $\omega \in \Lambda$.

b) Show that \wp_{Λ} a doubly periodic meromorphic function on \mathbb{C} with respect to Λ , i.e. $\wp_{\Lambda}(z) = \wp_{\Lambda}(z + \omega)$ for all $\omega \in \Lambda$ and all $z \in \mathbb{C}$.

Hint. Prove first that the derivative $\wp'_{\Lambda}(z) = -2\sum_{\omega \in \Lambda} \frac{1}{(z-\omega)^3}$ is doubly periodic.

c) Since \wp_{Λ} is periodic with respect to Λ , it defines a holomorphic map $\mathbb{C}/\Lambda \to \mathbb{P}_1$. Prove that this map is a two-sheeted branched covering map with exactly 4 branch points at

$$[0], \left[\frac{\omega_1}{2}\right], \left[\frac{\omega_2}{2}\right], \left[\frac{\omega_1 + \omega_2}{2}\right] \in \mathbb{C}/\Lambda.$$

Hint. To determine the zeros of \wp'_{Λ} , use that \wp'_{Λ} is an odd function of z, i.e. $\wp'_{\Lambda}(-z) = -\wp'_{\Lambda}(z)$ for all $z \in \mathbb{C}$.