Riemann Surfaces

Problem sheet \#1

Problem 1

Let X be a Riemann surface whose complex structure is defined by an atlas

$$
\mathfrak{A}:=\left\{\varphi_{j}: U_{j} \rightarrow V_{j} \mid j \in J\right\} .
$$

Denote by $\sigma: \mathbb{C} \rightarrow \mathbb{C}$ the complex conjugation. Define \mathfrak{A}^{σ} as the set of all complex charts

$$
\sigma \circ \varphi_{j}: U_{j} \rightarrow \sigma\left(V_{j}\right) \subset \mathbb{C}, \quad j \in J
$$

a) Prove that \mathfrak{A}^{σ} is again a complex atlas on the topological space underlying X, and thus defines a Riemann surface which will be denoted by X^{σ}.
b) Show that the atlas \mathfrak{A}^{σ} is not holomorphically equivalent with \mathfrak{A}, but there exist Riemann surfaces X which are isomorphic to X^{σ} (i.e. there exists a biholomorphic map $\varphi: X \rightarrow X^{\sigma}$).

Problem 2

Let \mathbb{S}^{2} be the unit sphere in \mathbb{R}^{3},

$$
\mathbb{S}^{2}:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}
$$

and let $N:=(0,0,1)$ be the north pole of \mathbb{S}^{2}. We identify the plane $\left\{x_{3}=0\right\} \subset \mathbb{R}^{3}$ with the complex number plane \mathbb{C} by the correspondence $\left(x_{1}, x_{2}, 0\right) \mapsto x_{1}+i x_{2}$.
The stereographic projection

$$
\text { st }: \mathbb{S}^{2} \longrightarrow \mathbb{C} \cup\{\infty\}=\mathbb{P}^{1}
$$

is defined as follows: For $x \in \mathbb{S}^{2} \backslash\{N\}$ let $\operatorname{st}(x)$ be the intersection of the plane $\left\{x_{3}=0\right\}$ with the line through N and x. For the north pole one defines $\operatorname{st}(N):=\infty$.
a) Show that the stereographic projection st is given by the formula

$$
\operatorname{st}(x)=\frac{1}{1-x_{3}}\left(x_{1}+i x_{2}\right) \quad \text { for all } x \in \mathbb{S}^{2} \backslash\{N\}
$$

b) An element A of the special orthogonal group

$$
S O(3)=\left\{A \in G L(3, \mathbb{R}): A^{T} A=E, \operatorname{det} A=1\right\}
$$

definies a bijective map of the sphere \mathbb{S}^{2} onto itself.

Prove that the map

$$
f:=\text { st } \circ A \circ \mathrm{st}^{-1}: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}
$$

is biholomorphic.
Hint. Use the fact that the group $S O(3)$ is generated by the subgroup of rotations with axis $\mathbb{R}(0,0,1)$ and the special transformation $\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, x_{3},-x_{2}\right)$.
c) Do all biholomorphic maps $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ arise in this way?

Problem 3

Let $\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ and $\Lambda^{\prime}=\mathbb{Z} \omega_{1}^{\prime}+\mathbb{Z} \omega_{2}^{\prime}$ be two lattices in \mathbb{C}. Show that $\Lambda=\Lambda^{\prime}$ if and only if there exists a matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L(2, \mathbb{Z})=\{A \in M(2 \times 2, \mathbb{Z}): \operatorname{det} A= \pm 1\}
$$

such that

$$
\binom{\omega_{1}^{\prime}}{\omega_{2}^{\prime}}=A\binom{\omega_{1}}{\omega_{2}} .
$$

Problem 4

a) Let $\Lambda, \Lambda^{\prime} \subset \mathbb{C}$ be two lattices. Let $\alpha \in \mathbb{C}^{*}$ be a complex number such that $\alpha \Lambda \subset \Lambda^{\prime}$. Show that the map $\mathbb{C} \rightarrow \mathbb{C}, z \mapsto \alpha z$, induces a holomorphic map

$$
\phi_{\alpha}: \mathbb{C} / \Lambda \longrightarrow \mathbb{C} / \Lambda^{\prime},
$$

which is biholomorphic if and only if $\alpha \Lambda=\Lambda^{\prime}$.
b) Show that every torus \mathbb{C} / Λ is isomorphic to a torus of the form

$$
X(\tau):=\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau)
$$

with $\tau \in \mathbb{H}$, where \mathbb{H} denotes the upper halfplane $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$.
c) Suppose $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbb{Z})$ and $\tau \in \mathbb{H}$. Let

$$
\tau^{\prime}:=\frac{a \tau+b}{c \tau+d} .
$$

Prove that $\operatorname{Im}\left(\tau^{\prime}\right)>0$ and the tori $X(\tau)$ and $X\left(\tau^{\prime}\right)$ are isomorphic.

