Riemann Surfaces Problem sheet #1

Problem 1

Let X be a Riemann surface whose complex structure is defined by an atlas

$$\mathfrak{A} := \{\varphi_j : U_j \to V_j \,|\, j \in J\}.$$

Denote by $\sigma: \mathbb{C} \to \mathbb{C}$ the complex conjugation. Define \mathfrak{A}^{σ} as the set of all complex charts

$$\sigma \circ \varphi_j : U_j \to \sigma(V_j) \subset \mathbb{C}, \qquad j \in J.$$

a) Prove that \mathfrak{A}^{σ} is again a complex atlas on the topological space underlying X, and thus defines a Riemann surface which will be denoted by X^{σ} .

b) Show that the atlas \mathfrak{A}^{σ} is not holomorphically equivalent with \mathfrak{A} , but there exist Riemann surfaces X which are isomorphic to X^{σ} (i.e. there exists a biholomorphic map $\varphi: X \to X^{\sigma}$).

Problem 2

Let \mathbb{S}^2 be the unit sphere in \mathbb{R}^3 ,

$$\mathbb{S}^2 := \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1 \}$$

and let N := (0, 0, 1) be the north pole of \mathbb{S}^2 . We identify the plane $\{x_3 = 0\} \subset \mathbb{R}^3$ with the complex number plane \mathbb{C} by the correspondence $(x_1, x_2, 0) \mapsto x_1 + ix_2$.

st : $\mathbb{S}^2 \longrightarrow \mathbb{C} \cup \{\infty\} = \mathbb{P}^1$

is defined as follows: For $x \in \mathbb{S}^2 \setminus \{N\}$ let $\operatorname{st}(x)$ be the intersection of the plane $\{x_3 = 0\}$ with the line through N and x. For the north pole one defines $\operatorname{st}(N) := \infty$.

a) Show that the stereographic projection st is given by the formula

$$st(x) = \frac{1}{1 - x_3}(x_1 + ix_2)$$
 for all $x \in \mathbb{S}^2 \setminus \{N\}.$

b) An element A of the special orthogonal group

$$SO(3) = \{A \in GL(3, \mathbb{R}) : A^T A = E, \det A = 1\}$$

definies a bijective map of the sphere \mathbb{S}^2 onto itself.

Prove that the map

$$f := \mathrm{st} \circ A \circ \mathrm{st}^{-1} : \mathbb{P}^1 \longrightarrow \mathbb{P}^1$$

is biholomorphic.

Hint. Use the fact that the group SO(3) is generated by the subgroup of rotations with axis $\mathbb{R}(0,0,1)$ and the special transformation $(x_1, x_2, x_3) \mapsto (x_1, x_3, -x_2)$.

c) Do all biholomorphic maps $\mathbb{P}^1 \to \mathbb{P}^1$ arise in this way?

Problem 3

Let $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ and $\Lambda' = \mathbb{Z}\omega'_1 + \mathbb{Z}\omega'_2$ be two lattices in \mathbb{C} . Show that $\Lambda = \Lambda'$ if and only if there exists a matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, \mathbb{Z}) = \{A \in M(2 \times 2, \mathbb{Z}) : \det A = \pm 1\}$$

such that

$$\binom{\omega_1'}{\omega_2'} = A\binom{\omega_1}{\omega_2}.$$

Problem 4

a) Let $\Lambda, \Lambda' \subset \mathbb{C}$ be two lattices. Let $\alpha \in \mathbb{C}^*$ be a complex number such that $\alpha \Lambda \subset \Lambda'$. Show that the map $\mathbb{C} \to \mathbb{C}, z \mapsto \alpha z$, induces a holomorphic map

 $\phi_{\alpha}: \mathbb{C}/\Lambda \longrightarrow \mathbb{C}/\Lambda',$

which is biholomorphic if and only if $\alpha \Lambda = \Lambda'$.

b) Show that every torus \mathbb{C}/Λ is isomorphic to a torus of the form

$$X(\tau) := \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$$

with $\tau \in \mathbb{H}$, where \mathbb{H} denotes the upper halfplane $\mathbb{H} := \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$. c) Suppose $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z})$ and $\tau \in \mathbb{H}$. Let

$$\tau' := \frac{a\tau + b}{c\tau + d}$$

Prove that $\text{Im}(\tau') > 0$ and the tori $X(\tau)$ and $X(\tau')$ are isomorphic.