Dirichletreihen und Zetafunktionen Übungsblatt 11

Aufgabe 41

Für eine ganze holomorphe Funktion $f: \mathbb{C} \to \mathbb{C}$ sei die Funktion $M_f: \mathbb{R}_+ \to \mathbb{R}_+$ definiert durch

$$M_f(r) := \sup\{|f(z)| : |z| = r\}.$$

Die Funktion f heißt ganz von der Ordnung $\alpha \in \mathbb{R}_+$, falls

$$\alpha = \inf\{a \in \mathbb{R}_+ : M_f(r) = O(\exp(r^a))\}.$$

Man beweise: Ist f eine ganze holomorphe Funktion der Ordnung $\alpha < 1$ und hat f keine Nullstellen, so ist f konstant.

Aufgabe 42

a) Man zeige: Die Funktion

$$F(s) := s(s-1)\pi^{-s/2}\Gamma(s/2)\zeta(s)$$

ist eine ganze holomorphe Funktion der Ordnung 1.

b) Es gibt eine ganze holomorphe Funktion $\Phi:\mathbb{C}\to\mathbb{C}$ der Ordnung $\frac{1}{2}$ mit

$$\Phi(z^2) = F(\frac{1}{2} + z)$$
 für alle $z \in \mathbb{C}$.

c) Man schließe daraus, dass die Zetafunktion im Streifen $\{0 < \text{Re}(s) < 1\}$ unendlich viele Nullstellen besitzt.

Aufgabe 43

Die Funktionalgleichung der Zetafunktion lässt sich schreiben als

$$\zeta(s) = \chi(s)\zeta(1-s)$$
 mit $\chi(s) = \frac{(2\pi)^s}{2\cos(\frac{\pi s}{2})\Gamma(s)}$.

Man beweise:

a) χ ist holomorph und $\neq 0$ in

$$G := \mathbb{C} \setminus \{ \sigma \in \mathbb{R} : |\sigma - \frac{1}{2}| \geqslant \frac{1}{2} \}.$$

b) Es gibt eine eindeutig bestimmte holomorphe Funktion $h:G\to\mathbb{C}$ mit

$$h(s)^2 = \chi(s)^{-1}$$
 und $h(\frac{1}{2}) = 1$.

c) Sei $Z(t) := h(\frac{1}{2} + it)\zeta(\frac{1}{2} + it)$. Dann gilt für alle $t \in \mathbb{R}$

$$Z(t) \in \mathbb{R}$$
 und $|Z(t)| = |\zeta(\frac{1}{2} + it)|$.

Aufgabe 44

Sei p eine Primzahl $\equiv 1 \mod 4$. Man beweise: Die Grundeinheit u_0 des Ganzheitsrings des quadratischen Zahlkörpers $\mathbb{Q}(\sqrt{p})$ hat negative Norm, also $N(u_0) = -1$.

Hinweis. Man gehe aus von einer minimalen nicht-trivialen Lösung $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ der Gleichung

$$x^{2} - py^{2} = 1$$
, d.h. $(x - 1)(x + 1) = py^{2}$

und untersuche die Möglichkeiten für gcd(x-1,py) und gcd(x+1,py).

 ${\bf Klausur}$ am Montag, 26. Januar 2015, 14 hct.