Algebraische Zahlentheorie Übungsblatt 10

Aufgabe 37

Sei K ein quadratischer Zahlkörper, \mathfrak{O}_K sein Ganzheitsring und $(0) \neq \mathfrak{a} \subset \mathfrak{O}_K$ ein primitives Ideal, d.h. es gebe keine ganze Zahl t > 1, so dass $(1/t)\mathfrak{a}$ ein ganzes Ideal ist.

- a) Man beweise: Für jedes $\xi \in \mathfrak{a}$ ist $N(\xi)$ ein ganzzahliges Vielfaches von $N(\mathfrak{a})$.
- b) Sei $m \neq 0$ eine vorgegebene ganze Zahl. Mithilfe von Aufgabe 32 zeige man, dass man stets ein solches $\xi \in \mathfrak{a}$ finden kann, so dass $N(\xi) = \alpha N(\mathfrak{a})$ mit $gcd(\alpha, m) = 1$. Man folgere daraus: Das Ideal \mathfrak{a} ist äquivalent zu einem ganzen Ideal \mathfrak{b} mit $gcd(N(\mathfrak{b}), m) = 1$.

Aufgabe 38

Sei $\theta := \sqrt[3]{m}$, wobei $m \ge 2$ eine kubusfreie ganze Zahl ist. Für $\xi := x + y\theta + z\theta^2 \in \mathbb{Q}(\theta)$ berechne man die Norm $N(\xi)$ als Funktion von $x, y, z \in \mathbb{Q}$.

Aufgabe 39

Sei $t := \sqrt[3]{10}$ und K der kubische Zahlkörper $K = \mathbb{Q}(t)$.

- a) Man zeige, dass das Element $u:=\frac{1}{3}(1+t+t^2)\in K$ ganz-algebraisch ist und bestimme das Minimal-Polynom von u über \mathbb{Q} .
- b) Man beweise, dass (1, t, u) eine Ganzheitsbasis von K ist.

Aufgabe 40

Man betrachte das folgende Untergitter von \mathbb{Z}^3 :

$$\Lambda := \{(x, y, z) \in \mathbb{Z}^3 : x + y \equiv 0 \bmod 2, \ x + 2y + 3z \equiv 0 \bmod 5\}.$$

Man bestimme eine Z-Basis von Λ , d.h. linear unabhängige Elemente $v_1, v_2, v_3 \in \Lambda$ mit

$$\Lambda = \mathbb{Z}v_1 + \mathbb{Z}v_2 + \mathbb{Z}v_3.$$

Abgabetermin: Freitag, 27. Juni 2014, 15 Uhr