Algebraische Zahlentheorie Übungsblatt 2

Aufgabe 5

Sei A ein Integritätsbereich und $K := \operatorname{Quot}(A)$ sein Quotientenkörper. Man zeige: Ist K endlich erzeugt als A-Modul, so gilt sogar K = A.

Aufgabe 6

Sei k ein Körper und B := k[T] der Polynomring in einer Unbestimmten T über k. Sei $A := k[T^2, T^3] \subset B$. Man zeige, dass B ganz über A ist und dass die induzierte Abbildung $\operatorname{Specm}(B) \to \operatorname{Specm}(A)$ bijektiv ist.

Aufgabe 7

- a) Sei $A := \mathbb{R}[T]$ der Polynomring in einer Unbestimmten T über dem Körper \mathbb{R} . Man zeige, dass das Maximalspektrum $X := \operatorname{Specm}(A)$ eine disjunkte Vereinigung $X = X_1 \stackrel{.}{\cup} X_2$ ist, wobei $X_1 = \{ \mathfrak{m} \in X : A/\mathfrak{m} \cong \mathbb{R} \}$ und $X_2 = \{ \mathfrak{m} \in X : A/\mathfrak{m} \cong \mathbb{C} \}$.
- b) Sei $B := \mathbb{R}[T] [\sqrt{T^2 + 1}]$, d.h. $B = \mathbb{R}[T, U]/(U^2 T^2 1)$.

Das Maximalspektrum $Y := \operatorname{Specm}(B)$ werde analog zu a) als $Y = Y_1 \dot{\cup} Y_2$ zerlegt. Sei

$$\pi: Y \longrightarrow X$$

die durch die Inklusion $A \subset B$ induzierte Abbildung. Man bestimme für jedes $\mathfrak{m} \in X$ die Faser $\pi^{-1}(\mathfrak{m})$, d.h. die maximalen Ideale von B, die über \mathfrak{m} liegen.

Aufgabe 8

a) Seien $A \subset B$ Integritätsbereiche und $s \in A \setminus \{0\}$. Man zeige

$$B \text{ ganz "über } A \implies B[1/s] \text{ ganz "über } A[1/s]$$

 $(A[1/s] \subset B[1/s]$ können als Unterringe des Quotientenkörpers von B aufgefasst werden.)

- b) Man zeige, dass die umgekehrte Implikation "\(== \)" im Allgemeinen nicht gilt.
- c) Seien $s_1, s_2 \in A \setminus \{0\}$ Elemente mit $As_1 + As_2 = A$. Man beweise:

 $B[1/s_i]$ ganz über $A[1/s_i]$ für i=1,2 \implies B ganz über A

Abgabetermin: Freitag, 2. Mai 2014, 15 Uhr