## Riemann Surfaces

## Problem sheet \#5

## Problem 17

a) Show that every root $z \in \mathbb{C}$ of the polynomial

$$
F(T):=T^{n}+a_{1} T^{n-1}+\ldots+a_{n-1} T+a_{n} \in \mathbb{C}[T]
$$

satisfies the estimate $|z| \leqslant 2 \max \left\{\left|a_{k}\right|^{1 / k}: 1 \leqslant k \leqslant n\right\}$.
b) Let $\Phi: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be the mapping defined by

$$
\Phi\left(z_{1}, \ldots, z_{n}\right):=\left(\sigma_{k}\left(z_{1}, \ldots, z_{n}\right)\right)_{1 \leqslant k \leqslant n},
$$

where $\sigma_{k}$ are the elementary symmetric polynomials.
Prove that $\Phi$ is a proper, surjective map.

## Problem 18

Let $p: X \rightarrow S$ be an $n$-sheeted branched holomorphic covering map of compact Riemann surfaces $X, S$. The trace map

$$
\operatorname{Tr}=\operatorname{Tr}_{X / S}: \mathcal{M}(X) \rightarrow \mathcal{M}(S)
$$

is defined as follows: For a function $f \in \mathcal{M}(X)$, let $\operatorname{Tr}(f)$ be the first elementary symmetric function of $f$ with respect to $p$, as defined in the course.
Show that all elementary symmetric functions of $f$ with respect to $p$ can be expressed polynomially in terms of $\operatorname{Tr}(f), \operatorname{Tr}\left(f^{2}\right), \ldots, \operatorname{Tr}\left(f^{n}\right)$. Give explicit formulas in the cases $n=2$ and $n=3$.

## Problem 19

Let $p: X_{3} \rightarrow \mathbb{P}_{1}$ be the Riemann surface of $\sqrt[3]{1-z^{3}}$, i.e. of the algebraic function defined by the polynomial

$$
w^{3}+z^{3}-1 \in \mathcal{M}\left(\mathbb{P}_{1}\right)[w], \quad \mathcal{M}\left(\mathbb{P}_{1}\right) \cong \mathbb{C}(z) .
$$

Determine all branch points and critical values of $p$ and show that there are no branch points above $\infty \in \mathbb{P}_{1}$.

## Problem 20

On the compact Riemann surface $X_{3}$ defined in Problem 19 consider the function $f:=w+z$.
a) Determine the poles and zeros of $f$.
b) Calculate the elementary symmetric functions of $f$ with respect to $p: X_{3} \rightarrow \mathbb{P}_{1}$.

