Riemann Surfaces

Problem sheet #3

Problem 9

Let $f: \mathbb{P}_1 \to \mathbb{P}_1$ be the holomorphic map defined by the rational function $f(z) := z + \frac{1}{z}$. Determine the branch points of f and show that there are biholomorphic maps $\varphi: \mathbb{P}_1 \to \mathbb{P}_1$ and $\psi: \mathbb{P}_1 \to \mathbb{P}_1$ such that the following diagram is commutative:

$$\begin{array}{ccc}
\mathbb{P}_1 & \xrightarrow{\varphi} & \mathbb{P}_1 \\
f \downarrow & & \downarrow p_2 \\
\mathbb{P}_1 & \xrightarrow{\psi} & \mathbb{P}_1
\end{array}$$

Here $p_2: \mathbb{P}_1 \to \mathbb{P}_1$ is the map $z \mapsto p_2(z) := z^2$.

Problem 10

- a) Show that the tangent function defines a locally biholomorphic map $tan : \mathbb{C} \to \mathbb{P}_1$.
- b) Prove that $\tan(\mathbb{C}) = \mathbb{P}_1 \setminus \{\pm i\}$ and that $\tan : \mathbb{C} \to \mathbb{P}_1 \setminus \{\pm i\}$ is a covering map.
- c) Show that there exist biholomorphic maps

$$\varphi: \mathbb{C} \to \mathbb{C}$$
 and $\psi: \mathbb{C}^* \to \mathbb{P}_1 \setminus \{\pm i\}$

such that the following diagram is commutative:

$$\begin{array}{ccc}
\mathbb{C} & \xrightarrow{\varphi} & \mathbb{C} \\
\exp \downarrow & & \downarrow \tan \\
\mathbb{C}^* & \xrightarrow{\psi} & \mathbb{P}_1 \setminus \{\pm i\}
\end{array}$$

Problem 11

Let X, Y, Z be locally compact Hausdorff spaces, $f: X \to Y, g: Y \to Z$ continuous maps and $h:=g\circ f: X\to Z$ the composite map.

Which of the following implications are true, which are false?

- i) f and g proper $\implies h$ proper,
- ii) f and h proper \implies g proper,
- iii) g and h proper $\implies f$ proper.

Give proofs or counter examples.

Problem 12

Let $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \subset \mathbb{C}$, $(\omega_1, \omega_2 \in \mathbb{C} \text{ linearily independent over } \mathbb{R})$, be a lattice. The Weierstrass \wp -function with respect to Λ is defined by

$$\wp_{\Lambda}(z) := \frac{1}{z^2} + \sum_{\omega \in \Lambda > 0} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right).$$

a) Prove that for every compact disc $K_r := \{z \in \mathbb{C} : |z| \leq r\}$ there exists a finite subset $\Lambda_0 \subset \Lambda$ such that $\omega \notin K_r$ for all $\omega \in \Lambda \setminus \Lambda_0$ and the series

$$\sum_{\omega \in \Lambda \setminus \Lambda_0} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right).$$

converges uniformly on K_r . This implies that \wp_{Λ} is a meromorphic function on \mathbb{C} with poles of order two exactly at the lattice points $\omega \in \Lambda$.

b) Show that \wp_{Λ} a doubly periodic meromorphic function on \mathbb{C} with respect to Λ , i.e. $\wp_{\Lambda}(z) = \wp_{\Lambda}(z + \omega)$ for all $\omega \in \Lambda$ and all $z \in \mathbb{C}$.

Hint. Prove first that the derivative $\wp'_{\Lambda}(z) = -2\sum_{\omega\in\Lambda}\frac{1}{(z-\omega)^3}$ is doubly periodic.

c) Since \wp_{Λ} is periodic with respect to Λ , it defines a holomorphic map $\mathbb{C}/\Lambda \to \mathbb{P}_1$. Prove that this map is a two-sheeted branched covering map with exactly 4 branch points at

$$[0], \left[\frac{\omega_1}{2}\right], \left[\frac{\omega_2}{2}\right], \left[\frac{\omega_1 + \omega_2}{2}\right] \in \mathbb{C}/\Lambda.$$

Hint. To determine the zeros of \wp_{Λ} , use that \wp'_{Λ} is an odd function of z, i.e. $\wp'_{\Lambda}(-z) = -\wp'_{\Lambda}(z)$ for all $z \in \mathbb{C}$.

Due: Wednesday, November 14, 2012, 15 h