Riemann Surfaces

Problem sheet \#3

Problem 9

Let $f: \mathbb{P}_{1} \rightarrow \mathbb{P}_{1}$ be the holomorphic map defined by the rational function $f(z):=z+\frac{1}{z}$.
Determine the branch points of f and show that there are biholomorphic maps $\varphi: \mathbb{P}_{1} \xrightarrow{z} \mathbb{P}_{1}$ and $\psi: \mathbb{P}_{1} \rightarrow \mathbb{P}_{1}$ such that the following diagram is commutative:

Here $p_{2}: \mathbb{P}_{1} \rightarrow \mathbb{P}_{1}$ is the map $z \mapsto p_{2}(z):=z^{2}$.

Problem 10

a) Show that the tangent function defines a locally biholomorphic map $\tan : \mathbb{C} \rightarrow \mathbb{P}_{1}$.
b) Prove that $\tan (\mathbb{C})=\mathbb{P}_{1} \backslash\{ \pm i\}$ and that $\tan : \mathbb{C} \rightarrow \mathbb{P}_{1} \backslash\{ \pm i\}$ is a covering map.
c) Show that there exist biholomorphic maps

$$
\varphi: \mathbb{C} \rightarrow \mathbb{C} \quad \text { and } \quad \psi: \mathbb{C}^{*} \rightarrow \mathbb{P}_{1} \backslash\{ \pm i\}
$$

such that the following diagram is commutative:

Problem 11

Let X, Y, Z be locally compact Hausdorff spaces, $f: X \rightarrow Y, g: Y \rightarrow Z$ continuous maps and $h:=g \circ f: X \rightarrow Z$ the composite map.
Which of the following implications are true, which are false?
i) f and g proper $\quad \Longrightarrow \quad h$ proper,
ii) f and h proper $\Longrightarrow g$ proper,
iii) g and h proper $\Longrightarrow f$ proper.

Give proofs or counter examples.

Problem 12

Let $\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2} \subset \mathbb{C},\left(\omega_{1}, \omega_{2} \in \mathbb{C}\right.$ linearily independent over $\left.\mathbb{R}\right)$, be a lattice. The Weierstrass \wp-function with respect to Λ is defined by

$$
\wp_{\Lambda}(z):=\frac{1}{z^{2}}+\sum_{\omega \in \Lambda \backslash 0}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) .
$$

a) Prove that for every compact disc $K_{r}:=\{z \in \mathbb{C}:|z| \leqslant r\}$ there exists a finite subset $\Lambda_{0} \subset \Lambda$ such that $\omega \notin K_{r}$ for all $\omega \in \Lambda \backslash \Lambda_{0}$ and the series

$$
\sum_{\omega \in \Lambda \backslash \Lambda_{0}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) .
$$

converges uniformly on K_{r}. This implies that \wp_{Λ} is a meromorphic function on \mathbb{C} with poles of order two exactly at the lattice points $\omega \in \Lambda$.
b) Show that \wp_{Λ} a doubly periodic meromorphic function on \mathbb{C} with respect to Λ, i.e. $\wp_{\Lambda}(z)=\wp_{\Lambda}(z+\omega)$ for all $\omega \in \Lambda$ and all $z \in \mathbb{C}$.
Hint. Prove first that the derivative $\wp_{\Lambda}^{\prime}(z)=-2 \sum_{\omega \in \Lambda} \frac{1}{(z-\omega)^{3}}$ is doubly periodic.
c) Since \wp_{Λ} is periodic with respect to Λ, it defines a holomorphic map $\mathbb{C} / \Lambda \rightarrow \mathbb{P}_{1}$. Prove that this map is a two-sheeted branched covering map with exactly 4 branch points at

$$
[0],\left[\frac{\omega_{1}}{2}\right],\left[\frac{\omega_{2}}{2}\right],\left[\frac{\omega_{1}+\omega_{2}}{2}\right] \in \mathbb{C} / \Lambda .
$$

Hint. To determine the zeros of \wp_{Λ}, use that \wp_{Λ}^{\prime} is an odd function of z, i.e. $\wp_{\Lambda}^{\prime}(-z)=$ $-\wp_{\Lambda}^{\prime}(z)$ for all $z \in \mathbb{C}$.

Due: Wednesday, November 14, 2012, 15 h

