Riemann Surfaces Problem sheet #1

Problem 1 Let \mathbb{S}^2 be the unit sphere in \mathbb{R}^3 ,

 $\mathbb{S}^2 := \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\}$

and let N := (0, 0, 1) be the north pole of \mathbb{S}^2 . We identify the plane $\{x_3 = 0\} \subset \mathbb{R}^3$ with the complex number plane \mathbb{C} by the correspondence $(x_1, x_2, 0) \mapsto x_1 + ix_2$.

We define a map st : $\mathbb{S}^2 \to \mathbb{C} \cup \{\infty\} = \mathbb{P}_1$ (stereographic projection) in the following way: For $x \in \mathbb{S}^2 \setminus \{N\}$ we let st(x) be the intersection of the plane $\{x_3 = 0\}$ with the line through N and x. For the north pole we define st(N) := ∞ .

Show that st : $\mathbb{S}^2 \to \mathbb{P}_1(\mathbb{C})$ is a homeomorphism and one has

$$st(x) = \frac{1}{1 - x_3}(x_1 + ix_2)$$
 for all $x \in S^2 \setminus \{N\}$.

Problem 2 Let $st : S^2 \to \mathbb{P}_1(\mathbb{C})$ be as in Problem 1. An element A of the special orthogonal group

$$SO(3) = \{A \in GL(3, \mathbb{R}) : A^T A = E, \det A = 1\}$$

definies a bijective map of the sphere \mathbb{S}^2 onto itself. Prove: The map

 $f := \mathrm{st} \circ A \circ \mathrm{st}^{-1} : \mathbb{P}_1(\mathbb{C}) \to \mathbb{P}_1(\mathbb{C})$

is biholomorphic.

Do all biholomorphic maps $\mathbb{P}_1(\mathbb{C}) \to \mathbb{P}_1(\mathbb{C})$ arise in this way?

Hint. Use the fact that the group SO(3) is generated by the subgroup of rotations with axis $\mathbb{R}(0,0,1)$ and the special transformation $(x_1, x_2, x_3) \mapsto (x_3, x_2, -x_1)$.

Problem 3 Let X be a Riemann surface, whose complex structure is defined by an atlas

 $\mathfrak{A} := \{ \varphi_j : U_j \to V_j \, | \, j \in J \}.$

Denote by $\sigma: \mathbb{C} \to \mathbb{C}$ the complex conjugation. Define \mathfrak{A}^{σ} as the set of all complex charts

$$\sigma \circ \varphi_j : U_j \to \sigma(V_j) \subset \mathbb{C}, \qquad j \in J.$$

a) Show that \mathfrak{A}^{σ} is again a complex atlas on the topological space underlying X, and thus defines a Riemann surface which will be denoted by X^{σ} .

b) Show that the Riemann surface $\mathbb{P}_1(\mathbb{C})^{\sigma}$ is isomorphic to $\mathbb{P}_1(\mathbb{C})$.

Problem 4 For $\tau \in \mathbb{H} := \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ let E_{τ} be the torus $E_{\tau} := \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$. Prove: The Riemann surface $(E_{\tau})^{\sigma}$ is isomorphic to a torus $E_{\tau'}$ with $\tau' \in \mathbb{H}$. Calculate τ' as a function of τ .

Due: Wednesday, October 31, 2012, 15 h