Riemann Surfaces

Problem sheet \#1

Problem 1 Let \mathbb{S}^{2} be the unit sphere in \mathbb{R}^{3},

$$
\mathbb{S}^{2}:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}
$$

and let $N:=(0,0,1)$ be the north pole of \mathbb{S}^{2}. We identify the plane $\left\{x_{3}=0\right\} \subset \mathbb{R}^{3}$ with the complex number plane \mathbb{C} by the correspondence $\left(x_{1}, x_{2}, 0\right) \mapsto x_{1}+i x_{2}$.
We define a map st : $\mathbb{S}^{2} \rightarrow \mathbb{C} \cup\{\infty\}=\mathbb{P}_{1}$ (stereographic projection) in the following way: For $x \in \mathbb{S}^{2} \backslash\{N\}$ we let st (x) be the intersection of the plane $\left\{x_{3}=0\right\}$ with the line through N and x. For the north pole we define st $(N):=\infty$.
Show that st : $\mathbb{S}^{2} \rightarrow \mathbb{P}_{1}(\mathbb{C})$ is a homeomorphism and one has

$$
\operatorname{st}(x)=\frac{1}{1-x_{3}}\left(x_{1}+i x_{2}\right) \quad \text { for all } x \in \mathbb{S}^{2} \backslash\{N\} .
$$

Problem 2 Let st : $\mathbb{S}^{2} \rightarrow \mathbb{P}_{1}(\mathbb{C})$ be as in Problem 1. An element A of the special orthogonal group

$$
S O(3)=\left\{A \in G L(3, \mathbb{R}): A^{T} A=E, \operatorname{det} A=1\right\}
$$

definies a bijective map of the sphere \mathbb{S}^{2} onto itself. Prove: The map

$$
f:=\operatorname{st} \circ A \circ \mathrm{st}^{-1}: \mathbb{P}_{1}(\mathbb{C}) \rightarrow \mathbb{P}_{1}(\mathbb{C})
$$

is biholomorphic.
Do all biholomorphic maps $\mathbb{P}_{1}(\mathbb{C}) \rightarrow \mathbb{P}_{1}(\mathbb{C})$ arise in this way?
Hint. Use the fact that the group $S O(3)$ is generated by the subgroup of rotations with axis $\mathbb{R}(0,0,1)$ and the special transformation $\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{3}, x_{2},-x_{1}\right)$.

Problem 3 Let X be a Riemann surface, whose complex structure is defined by an atlas $\mathfrak{A}:=\left\{\varphi_{j}: U_{j} \rightarrow V_{j} \mid j \in J\right\}$.
Denote by $\sigma: \mathbb{C} \rightarrow \mathbb{C}$ the complex conjugation. Define \mathfrak{A}^{σ} as the set of all complex charts $\sigma \circ \varphi_{j}: U_{j} \rightarrow \sigma\left(V_{j}\right) \subset \mathbb{C}, \quad j \in J$.
a) Show that \mathfrak{A}^{σ} is again a complex atlas on the topological space underlying X, and thus defines a Riemann surface which will be denoted by X^{σ}.
b) Show that the Riemann surface $\mathbb{P}_{1}(\mathbb{C})^{\sigma}$ is isomorphic to $\mathbb{P}_{1}(\mathbb{C})$.

Problem 4 For $\tau \in \mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ let E_{τ} be the torus $E_{\tau}:=\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau)$. Prove: The Riemann surface $\left(E_{\tau}\right)^{\sigma}$ is isomorphic to a torus $E_{\tau^{\prime}}$ with $\tau^{\prime} \in \mathbb{H}$. Calculate τ^{\prime} as a function of τ.

