Elliptische Funktionen und Elliptische Kurven Übungsblatt 12

Es sei k stets ein algebraisch abgeschlossener Körper der Charakteristik $\neq 2$.

Aufgabe 45

Es sei $P_4(X) \in k[X]$ ein Polynom 4. Grades ohne mehrfache Nullstellen und $K := k(X)[\sqrt{P_4(X)}].$

- a) Man beweise: Es gibt genau zwei normalisierte diskrete Bewertungen $v_i: K^* \to \mathbb{Z}$ mit $v_i(X) < 0$. Für beide Bewertungen ist 1/X eine Orts-Uniformisierende.
- b) Man gebe eine Funktion $f \in K$ mit folgender Eigenschaft an: $v_1(f) > 0$ und $v_2(f) = 0$.

Aufgabe 46

Es sei $P_5(X) \in k[X]$ ein Polynom 5. Grades ohne mehrfache Nullstellen und $K := k(X)[\sqrt{P_5(X)}].$

- a) Man beweise: Es gibt genau eine normalisierte diskrete Bewertung $v:K^*\to\mathbb{Z}$ mit v(X)<0.
- b) Man zeige, dass $t := X^2/Y$ eine Orts-Uniformisierende für diese Bewertung ist. Dabei sei $Y := \sqrt{P_5(X)}$.

Aufgabe 47 Sei

$$P_3(X) := X^3 + c_1 X^2 + c_2 X + c_3 \in k[X]$$

ein Polynom 3. Grades mit paarweise verschiedenen Nullstellen $x_1, x_2, x_3 \in k$. Sei $E \subset \mathbb{P}_2(k)$ die elliptische Kurve mit affiner Gleichung $Y^2 = P_3(X)$. Man bestimme den Divisor der Funktion $f := X^2/Y \in k(E)$.

Hinweis. Man unterscheide die Fälle $c_3 = 0$ und $c_3 \neq 0$.

Aufgabe 48

Sei $E \subset \mathbb{P}_2(k)$ die elliptische Kurve mit affiner Gleichung

$$Y^2 = X(X-1)(X-c), \qquad c \in k \setminus \{0,1\}.$$

Man bestimme die Nullstellen-Ordnung der Funktion $f:=X-\lambda Y^2$ auf E im Punkt (0,0) in Abhängigkeit von $\lambda\in k$ und $c\in k\smallsetminus\{0,1\}.$

Abgabetermin: Freitag, 25. Jan. 2008, 14:10 Uhr, Übungskasten im ersten Stock vor der Bibliothek

Klausur am Freitag, 1. Februar 2008, 14–16 Uhr