Elliptische Funktionen und Elliptische Kurven Übungsblatt 3

Aufgabe 9

Sei $\tau \in \mathbb{C}$, $\operatorname{Im}(\tau) > 0$ und

$$F(z) := \sum_{n \in \mathbb{Z}} \frac{1}{\sin^2(z + n\tau)}.$$

- a) Man zeige, dass diese Reihe auf jedem Kompaktum $K \subset \mathbb{C}$ gleichmäßig gegen eine bzgl. des Gitters $\Lambda := \mathbb{Z}\pi + \mathbb{Z}\tau$ doppelt-periodische meromorphe Funktion auf \mathbb{C} konvergiert.
- b) Man beweise $F(z) = \wp_{\Lambda}(z) + C$ mit einer geeigneten Konstanten $C \in \mathbb{C}$.

Aufgabe 10

Sei $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \subset \mathbb{C}$ ein Gitter und $\Lambda' := \mathbb{Z} \frac{\omega_1 + \omega_2}{2} + \mathbb{Z} \frac{\omega_1 - \omega_2}{2}$.

- a) Man zeige: $\Lambda \subset \Lambda'$ und die Quotienten-Gruppe Λ'/Λ hat die Ordnung 2.
- b) Sei $f:\mathbb{C}\to\mathbb{P}_1$ eine bzgl. des Gitters Λ doppelt-periodische meromorphe Funktion und

$$g(z) := f(z) + f\left(z + \frac{\omega_1 + \omega_2}{2}\right).$$

Man zeige, dass g doppelt-periodisch bzgl. des Gitters Λ' ist. Falls $f = \wp_{\Lambda}$ die Weierstraßsche \wp -Funktion bzgl. Λ ist, was ist dann g?

Aufgabe 11

Sei $\emptyset \neq D \subset \mathbb{C}$ ein Gebiet und $f:D \to \mathbb{C}$ eine nicht-konstante holomorphe Funktion, die in D der Differentialgleichung

$$f'(z)^2 = 4f(z)^3 - g_2f(z) - g_3$$

genügt. Dabei seien $g_2 = 60G_4(\Lambda)$ und $g_3 = 140G_6(\Lambda)$ bzgl. eines Gitters $\Lambda \subset \mathbb{C}$. Man beweise:

Es gibt eine Konstante $a \in \mathbb{C}$, so dass

$$f(z) = \wp_{\Lambda}(z+a)$$
 für alle $z \in D$.

Die Konstante a ist modulo Λ eindeutig bestimmt.

Aufgabe 12

Mit den Eisensteinreihen $G_{2k}(\Lambda)$, $k \geq 2$, für Gitter $\Lambda \subset \mathbb{C}$ definiert man mit demselben Buchstaben bezeichnete Funktionen $G_{2k}: \mathbb{H} \to \mathbb{C}$ auf der oberen Halbebene durch

$$G_{2k}(\tau) := G_{2k}(\mathbb{Z} + \mathbb{Z}\tau)$$
 für alle $\tau \in \mathbb{H}$.

a) Man zeige: G_{2k} ist eine auf \mathbb{H} holomorphe Funktion und es gilt

$$G_{2k}(\tau+1) = G_{2k}(\tau)$$
 und $G_{2k}(-1/\tau) = \tau^{2k}G_{2k}(\tau)$ für alle $\tau \in \mathbb{H}$.

b) Die Funktion G_{2k} lässt sich in eine Fourier-Reihe der folgenden Gestalt entwickeln:

$$G_{2k}(\tau) = \sum_{n=0}^{\infty} c_n e^{2\pi i n \tau}$$

(vgl. Aufg. 1). Für den Koeffizienten c_0 gilt

$$c_0 = 2\zeta(2k)$$
, wobei $\zeta(2k) := \sum_{n=1}^{\infty} \frac{1}{n^{2k}}$.

Abgabetermin: Freitag, 9. Nov. 2007, 14:10 Uhr, Übungskasten im ersten Stock vor der Bibliothek