Cryptography

Problem Sheet \#8

Problem 29

Let $N=p q$ be an RSA modulus ($p \neq q$ odd primes) and $e \geq 3$ an encryption exponent for N, i.e. $\operatorname{gcd}(e, \varphi(N))=1$. Let $\lambda(N):=\operatorname{lcm}(p-1, q-1)$ (lcm $=$ least common multiple). Define d^{\prime} by the congruence

$$
e d^{\prime} \equiv 1 \bmod \lambda(N)
$$

Show that d^{\prime} can be used as a decryption exponent, i.e. $x^{e d^{\prime}} \equiv x \bmod N$ for all x.

Problem 30

Consider a mini RSA system with modulus $N=59291$ and encryption exponent $e=17$.
a) Determine the decryption exponent d defined by $e d \equiv 1 \bmod \varphi(N)$, and d^{\prime} defined as in problem 29.
b) This RSA system has been used as an ASCII bigram substitution

$$
\mathbb{Z}_{256}^{2} \ni(a, b) \mapsto(\bar{a}, \bar{b}) \in \mathbb{Z}_{256}^{2}
$$

defined by

$$
x:=a \cdot 256+b, \quad y:=x^{e} \bmod N, \text { with } y=\bar{a} \cdot 256+\bar{b} .
$$

The following 12-byte ciphertext was obtained in this way:

```
29CA 8D6E 79DB DF23 77AB 969B
```

Find the plaintext.

Problem 31

Let $N=p q$ ($p \neq q$ odd primes) be an RSA modulus and e an encryption exponent.
a) Prove that the encryption function $E: \mathbb{Z}_{N} \longrightarrow \mathbb{Z}_{N}, x \mapsto E(x)=x^{e} \bmod N$, has precisely

$$
m:=(1+\operatorname{gcd}(e-1, p-1))(1+\operatorname{gcd}(e-1, q-1))
$$

fixpoints, i.e. elements $x \in \mathbb{Z}_{N}$ with $E(x)=x$.
b) Determine all fixpoints in the case $(N, e)=(8453,17)$.

Problem 32

a) Suppose Alice and Ann set up RSA systems with the same modulus N but different public encryption exponents $e_{1}=5, e_{2}=17$. Bob sends the same message $x \in \mathbb{Z}_{N}$, encrypted as

$$
y_{1}:=x^{e_{1}} \bmod N, \quad y_{2}:=x^{e_{2}} \bmod N
$$

to Alice and Ann. Show how Eve can retrieve the message x from y_{1} and y_{2} without factorizing N.
b)* Find the plaintext in the following example (hexadecimal notation):

```
N= FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 262E
    C832 3112 D80A B28E AAFC 2BDO 15C0 934B E2F3
y}=12AA 25EF 5206 4482 3F53 45F9 B7B2 BB09 850A 297C
    B9CE 879E DA8E 8658 7300 D25A 85BB 66F1 10B9
y}\mp@subsup{y}{2}{= 03B4 C925 9E24 DB6C 09D8 1A53 F20B 2470 C845 D858
    0 9 1 5 5 5 3 3 ~ 3 2 3 A ~ 0 A 7 7 ~ 7 0 9 A ~ A D F 6 ~ 2 F C A ~ 8 4 F E ~ 7 E 8 C ~
```

Here the plaintext was an ASCII text $\left(a_{1}, a_{2}, \ldots, a_{n}\right), a_{i} \in \mathbb{Z}_{256}$, represented by the integer

$$
x=\sum_{i=1}^{n} a_{i} \cdot 256^{n-i} .
$$

Problems marked by an asterisk * are not obligatory, but solutions get extra points.
Due: Friday, June 15, 2007, 14:10 h
Solutions should be returned in the Cryptography letter box in the first floor of the Institute in front of the library.

