Cryptography Problem Sheet #8

Problem 29

Let N = pq be an RSA modulus $(p \neq q \text{ odd primes})$ and $e \geq 3$ an encryption exponent for N, i.e. $gcd(e, \varphi(N)) = 1$. Let $\lambda(N) := lcm(p - 1, q - 1)$ (lcm = least common multiple). Define d' by the congruence

 $ed' \equiv 1 \mod \lambda(N).$

Show that d' can be used as a decryption exponent, i.e. $x^{ed'} \equiv x \mod N$ for all x.

Problem 30

Consider a mini RSA system with modulus N = 59291 and encryption exponent e = 17.

a) Determine the decryption exponent d defined by $ed \equiv 1 \mod \varphi(N)$, and d' defined as in problem 29.

b) This RSA system has been used as an ASCII bigram substitution

 $\mathbb{Z}_{256}^2 \ni (a,b) \mapsto (\overline{a},\overline{b}) \in \mathbb{Z}_{256}^2$

defined by

 $x := a \cdot 256 + b, \quad y := x^e \mod N$, with $y = \overline{a} \cdot 256 + \overline{b}$.

The following 12-byte ciphertext was obtained in this way:

29CA 8D6E 79DB DF23 77AB 969B

Find the plaintext.

Problem 31

Let N = pq ($p \neq q$ odd primes) be an RSA modulus and e an encryption exponent.

a) Prove that the encryption function $E : \mathbb{Z}_N \longrightarrow \mathbb{Z}_N, x \mapsto E(x) = x^e \mod N$, has precisely

 $m := (1 + \gcd(e - 1, p - 1))(1 + \gcd(e - 1, q - 1))$

fixpoints, i.e. elements $x \in \mathbb{Z}_N$ with E(x) = x.

b) Determine all fixpoints in the case (N, e) = (8453, 17).

Problem 32

a) Suppose Alice and Ann set up RSA systems with the same modulus N but different public encryption exponents $e_1 = 5$, $e_2 = 17$. Bob sends the same message $x \in \mathbb{Z}_N$, encrypted as

$$y_1 := x^{e_1} \mod N, \quad y_2 := x^{e_2} \mod N$$

to Alice and Ann. Show how Eve can retrieve the message x from y_1 and y_2 without factorizing N.

b)* Find the plaintext in the following example (hexadecimal notation):

N	=	FFFF	262E								
		C832	3112	D80A	B28E	AAFC	2BD0	15C0	934B	E2F3	
y_1	=	12AA B9CE	25EF 879E	5206 DA8E	4482 8658	3F53 7300	45F9 D25A	B7B2 85BB	BB09 66F1	850A 10B9	297C
y_2	=	03B4 0915	C925 5533	9E24 323A	DB6C 0A77	09D8 709A	1A53 ADF6	F20B 2FCA	2470 84FE	C845 7E8C	D858

Here the plaintext was an ASCII text (a_1, a_2, \ldots, a_n) , $a_i \in \mathbb{Z}_{256}$, represented by the integer

$$x = \sum_{i=1}^{n} a_i \cdot 256^{n-i}.$$

Problems marked by an asterisk * are not obligatory, but solutions get extra points.

Due: Friday, June 15, 2007, 14:10 h

Solutions should be returned in the Cryptography letter box in the first floor of the Institute in front of the library.