Cryptography

Problem Sheet \#6

Problem 21

The elements of the field $\mathbb{F}_{2^{4}}=\mathbb{F}_{2}[X] /(\varphi(X))$, where φ is the irreducible polynomial $\varphi(X)=X^{4}+X+1 \in \mathbb{F}_{2}[X]$, are identified with 4-bit integers, where $\xi=\sum_{i=0}^{3} a_{i} 2^{i}$ corresponds to $\sum a_{i} X^{i} \bmod \varphi(X)$. We use hexadecimal notation for the 4-bit integers.
a) Let $u:={ }^{\prime} 2$ ', $v:=$ ' 6 '. Calculate $u+v, u \cdot v, u^{3}$ and u^{5}.
b) Show that the element $u=$ ' 2 ' is a primitive root of $\mathbb{F}_{2^{4}}^{*}$, i.e. a generator of the multiplicative group $\mathbb{F}_{2^{4}}^{*}$.

Problem 22

With $F(X):=X^{8}+1 \in \mathbb{F}_{2}[X]$ define the ring $R:=\mathbb{F}_{2}[X] /(F(X))$, which is an 8 -dimensional vector space over \mathbb{F}_{2}. Let

$$
G(X):=X^{4}+X^{3}+X^{2}+X+1 \in \mathbb{F}_{2}[X] .
$$

Consider the map

$$
\psi: R \rightarrow R, \quad f \mapsto \psi(f):=G \cdot f \bmod F .
$$

a) Show that the matrix of ψ with respect to the basis $\left(\overline{1}, \bar{X}, \ldots, \overline{X^{7}}\right)$ of R over \mathbb{F}_{2} is

$$
M=\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right) .
$$

Remark. This matrix appears in the description of the byte substitution in AES.
b) Show that $\operatorname{gcd}(F, G)=1$ and calculate the inverse of $G \bmod F$ in the ring R.
c) Show that the matrix $M \in \mathrm{M}\left(8 \times 8, \mathbb{F}_{2}\right)$ is invertible and calculate its inverse.

Problem 23

We define a binary operation $\boxtimes: \mathbb{Z}_{256} \times \mathbb{Z}_{256} \rightarrow \mathbb{Z}_{256}$ using the bijective map

$$
\phi: \mathbb{Z}_{256} \rightarrow \mathbb{F}_{257}^{*}, \quad x \mapsto \phi(x):= \begin{cases}256 & \text { if } x=0 \\ x & \text { if } x \neq 0\end{cases}
$$

as follows: $x \boxtimes y:=\phi^{-1}(\phi(x) \cdot \phi(y))$, where '‘' denotes multiplication in the field \mathbb{F}_{257}.
a) Prove that $\left(\mathbb{Z}_{256}, \boxtimes\right)$ is a group, which is isomorphic to $\left(\mathbb{Z}_{256},+\right)$.
b) Show that $\left(\mathbb{Z}_{256},+, \boxtimes\right)$ is not a ring.

Problem 24

The following ciphertext was encrypted using a mini-version of a 2-round Feistel network: The block length is $16=2 \times 8$ bits $=2$ bytes. The i-th round transformation is $(L, R) \mapsto\left(R, L \oplus f\left(R, K_{i}\right)\right)$ with

$$
f\left(x, K_{i}\right):=\left(A_{i} \boxtimes x+B_{i}\right) \bmod 2^{8},
$$

where \boxtimes was defined in problem 23 and $K_{i}=\left(A_{i}, B_{i}\right) \in \mathbb{Z}_{2^{8}}^{2}, i=1,2$, are independent round keys. After the last round, the left and right halves are swapped. The plaintext begins with the four bytes "The " (hexadecimal 5468 6520).

```
10B4 D2A9 1F20 75A1 72AF 7371 7B27 9A5F OCAA FDAD FD4C C62E
767E C1A0 7E64 157B 043A 5CA7 C62E B867 82F3 D0D8 DF6C
```

Determine the keys K_{1}, K_{2} and decrypt the ciphertext.

Due: Wednesday, May 30, 2007, 14:10 h
Solutions should be returned in the Cryptography letter box in the first floor of the Institute in front of the library.

