Cryptography

Problem Sheet \#5

Problem 17

For a positive integer m let $N_{m}:=\{x \in \mathbb{Z}: 0 \leq x<m\}$.
a) Define the function $F: N_{32} \rightarrow N_{32}$ as follows: For $x \in N_{32}$ let $\left(b_{0}, b_{1}, \ldots, b_{9}\right) \in$ $\{0,1\}^{10}$ be given by the relation

$$
x(x+1)=\sum_{i=0}^{9} b_{i} 2^{i}, b_{i} \in\{0,1\} .
$$

Then set

$$
F(x):=\sum_{i=0}^{4} b_{i+2} 2^{i} \in N_{32} .
$$

A cycle of length r of F is an r-element subset $C=\left\{x_{0}, x_{1}, \ldots, x_{r-1}\right\} \subset N_{32}$ such that

$$
F\left(x_{i-1}\right)=x_{i} \text { for } 1 \leq i<r \quad \text { and } \quad F\left(x_{r-1}\right)=x_{0} .
$$

(A cycle of length 1 consists of a single fixpoint of F). The domain of attraction (G. Einzugsbereich) of C is the set

$$
A(C):=\left\{x \in N_{32}: F^{k}(x) \in C \text { for some integer } k \geq 0\right\} .
$$

Determine all cycles and fixpoints of F and their domains of attraction. Display the result in a graph.
b) Find the largest cycle of the map $G: N_{100} \rightarrow N_{100}$, defined as follows: For $x \in N_{100}$ let

$$
x^{2}=\sum_{i=0}^{3} c_{i} 10^{i}, c_{i} \in\{0,1, \ldots, 9\} .
$$

Then $G(x):=c_{1}+10 c_{2}$.

Problem 18

The sequence $\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=(11,30,229,8,267)$ was generated by a linear congruential generator $x_{i+1}=\left(a x_{i}+b\right) \bmod m, i \geq 0$. Determine a, b, m and compute the values x_{5}, \ldots, x_{9}.

Problem 19

a) Prove that the polynomial $F(T):=T^{7}+T+1 \in \mathbb{F}_{2}[T]$ is irreducible.
b) Show that for every initial vector $v=\left(b_{0}, b_{1}, \ldots, b_{6}\right) \in \mathbb{F}_{2}^{7} \backslash\{\overrightarrow{0}\}$ the LFSR sequence defined by

$$
b_{k+7}=b_{k+1}+b_{k}
$$

has period length 127 .

Problem 20

Use the sequence $\left(b_{i}\right)$ of 19 b) to "shrink" the sequence $\left(x_{i}\right)$ of problem 18 as follows: Define $z_{i}:=x_{k_{i}}$, where k_{i} is the position of the i-th ' 1 ' in the sequence (b_{i}) (all counts are 0-based).

What is the period of the shrunk sequence $\left(z_{i}\right)$ for the initial vector

$$
v=\left(b_{0}, \ldots, b_{6}\right)=(1,1, \ldots, 1) .
$$

What about other initial vectors?

Due: Wednesday, May 23, 2007, 14:10 h
Solutions should be returned in the Cryptography letter box in the first floor of the Institute in front of the library.

