Cryptography Problem Sheet #5

Problem 17

For a positive integer m let $N_m := \{x \in \mathbb{Z} : 0 \le x < m\}.$

a) Define the function $F: N_{32} \to N_{32}$ as follows: For $x \in N_{32}$ let $(b_0, b_1, \ldots, b_9) \in \{0, 1\}^{10}$ be given by the relation

$$x(x+1) = \sum_{i=0}^{9} b_i 2^i, \ b_i \in \{0, 1\}.$$

Then set

$$F(x) := \sum_{i=0}^{4} b_{i+2} 2^{i} \in N_{32}.$$

A cycle of length r of F is an r-element subset $C = \{x_0, x_1, \ldots, x_{r-1}\} \subset N_{32}$ such that

 $F(x_{i-1}) = x_i$ for $1 \le i < r$ and $F(x_{r-1}) = x_0$.

(A cycle of length 1 consists of a single fixpoint of F). The domain of attraction (G. Einzugsbereich) of C is the set

$$A(C) := \{ x \in N_{32} : F^k(x) \in C \text{ for some integer } k \ge 0 \}.$$

Determine all cycles and fixpoints of F and their domains of attraction. Display the result in a graph.

b) Find the largest cycle of the map $G: N_{100} \to N_{100}$, defined as follows: For $x \in N_{100}$ let

$$x^{2} = \sum_{i=0}^{3} c_{i} \, 10^{i}, \ c_{i} \in \{0, 1, \dots, 9\}.$$

Then $G(x) := c_1 + 10c_2$.

Problem 18

The sequence $(x_0, x_1, x_2, x_3, x_4) = (11, 30, 229, 8, 267)$ was generated by a linear congruential generator $x_{i+1} = (ax_i + b) \mod m$, $i \ge 0$. Determine a, b, m and compute the values x_5, \ldots, x_9 .

Problem 19

a) Prove that the polynomial $F(T) := T^7 + T + 1 \in \mathbb{F}_2[T]$ is irreducible.

b) Show that for every initial vector $v = (b_0, b_1, \ldots, b_6) \in \mathbb{F}_2^7 \setminus \{\vec{0}\}$ the LFSR sequence defined by

 $b_{k+7} = b_{k+1} + b_k$

has period length 127.

Problem 20

Use the sequence (b_i) of 19b) to "shrink" the sequence (x_i) of problem 18 as follows: Define $z_i := x_{k_i}$, where k_i is the position of the *i*-th '1' in the sequence (b_i) (all counts are 0-based).

What is the period of the shrunk sequence (z_i) for the initial vector

 $v = (b_0, \ldots, b_6) = (1, 1, \ldots, 1).$

What about other initial vectors?

Due: Wednesday, May 23, 2007, 14:10 h

Solutions should be returned in the Cryptography letter box in the first floor of the Institute in front of the library.