Cryptography
 Problem Sheet \#4

Problem 13

Let M be a finite set with $m \geq 2$ elements. As defined in problem 8, an involution of M is a map $\sigma: M \rightarrow M$, different from the identity, with $\sigma \circ \sigma=\mathrm{id}_{M}$.
a) Prove: If m is odd, then every involution σ of M has at least one fixpoint, i.e. there exists an $x \in M$ with $\sigma(x)=x$.
b) Let $m=2 k$ be even. Determine the number of involutions of M without fixpoints.

Problem 14

Let $\sigma: \mathbb{Z}_{26} \rightarrow \mathbb{Z}_{26}$ be an involution without fixpoints. Determine the number of permutations $\pi: \mathbb{Z}_{26} \rightarrow \mathbb{Z}_{26}$ such that

$$
\pi^{-1} \sigma \pi=\sigma .
$$

Problem 15

Let $N=2 n$ be an even positive integer and $\mathcal{P}=\mathcal{C}=\mathbb{Z}_{2}^{N}$. Let $\mathcal{K}=S_{N}$ be the group of all permutations of the set $\{1,2, \ldots, N\}$. For $\pi \in \mathcal{K}$ define the encryption $E_{\pi}: \mathcal{P} \rightarrow \mathcal{C}$ in the obvious way by letting π permute the components of a plaintext vector $x \in \mathbb{Z}_{2}^{N}$. Set $D_{\pi}=\left(E_{\pi}\right)^{-1}$. Let $\mathbb{P}_{\text {key }}$ be the uniform probability distribution on \mathcal{K} and let $\mathbb{P}_{\text {plain }}$ be an arbitrary probability distribution with $\mathbb{P}_{\text {plain }}(x)>0$ for all $x \in \mathcal{P}$.
a) Show that the cipher system $\left(\mathcal{P}, \mathcal{C}, \mathcal{K}, E, D, \mathbb{P}_{\text {plain }}, \mathbb{P}_{\text {key }}\right)$ does not provide perfect secrecy.
b) Consider the following subsystem: Let $\mathcal{P}_{1}=\mathcal{C}_{1}$ be the set of all vectors $x=$ $\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{Z}_{2}^{N}$ such that exactly n of the components x_{i} are zero. Prove that the cipher system $\left(\mathcal{P}_{1}, \mathcal{C}_{1}, \mathcal{K}, E, D, \mathbb{P}_{\text {plain1 }}, \mathbb{P}_{\text {key }}\right)$ provides perfect secrecy. Here $\mathbb{P}_{\text {plain } 1}$ is any probability distribution on \mathcal{P}_{1} with $\mathbb{P}_{\text {plain } 1}(x)>0$ for all $x \in \mathcal{P}_{1}$.

Problem 16

A sequence $x_{i} \in \mathbb{Z}_{25}, i \geq 0$, has been generated by a linear congruential generator

$$
f: \mathbb{Z}_{25} \rightarrow \mathbb{Z}_{25}, \quad x \mapsto(a x+b) \bmod 25,
$$

with an initial element $x_{0} \in \mathbb{Z}_{25}$ and recursion relation $x_{i+1}=f\left(x_{i}\right)$.
We identify \mathbb{Z}_{25} with the alphabet $\mathrm{A} \ldots \mathrm{Z}$ without the letter J. The following ciphertext has been obtained from an English plaintext by adding the sequence $\left(x_{i}\right)$ modulo 25.

LHHBLADYTXIUCZDDKPKVVTLZXNEG

The beginning of the plaintext was THE. Calculate a, b and the plaintext.

