Cryptography

Problem Sheet \#3

Problem 9

Prove that a Vigenère encryption with a keyword without repeated letters is a special case of the OFB mode of a monoalphabetic substitution as defined in problem 3.

Problem 10 Let

$$
\mathcal{P}:=\left\{\vec{p}=\left(p_{i}\right)_{i \in \mathbb{Z}_{m}} \in \mathbb{R}^{m}: \sum_{i \in \mathbb{Z}_{m}} p_{i}=1 \text { and } p_{i} \geq 0 \text { for all } i \in \mathbb{Z}_{m}\right\}
$$

be the set of all probability distributions on \mathbb{Z}_{m}. For $\vec{p}, \vec{q} \in \mathcal{P}$ we define the convolution product $\vec{r}=\vec{p} * \vec{q}$ by

$$
r_{n}:=\sum_{i \in \mathbb{Z}_{m}} p_{i} q_{n-i} .
$$

a) Show that $\vec{p} * \vec{q}$ belongs again to \mathcal{P}, and that the convolution product is commutative and associative, i.e.

$$
\vec{p} * \vec{q}=\vec{q} * \vec{p} \quad \text { and } \quad(\vec{p} * \vec{q}) * \vec{r}=\vec{p} *(\vec{q} * \vec{r}) \quad \text { for all } \vec{p}, \vec{q}, \vec{r} \in \mathcal{P} .
$$

b) Let $\vec{u} \in P$ be the uniform distribution, i.e. $u_{i}=1 / m$ for all $i \in \mathbb{Z}_{m}$.

Prove that $\vec{u} * \vec{p}=\vec{u}$ for all $\vec{p} \in \mathcal{P}$.

Problem 11

a) Let $x, y \in \mathbb{Z}_{m}^{N}$ be random texts in the alphabet \mathbb{Z}_{m}, where the letters have been chosen indepently according to the probability distribution $\vec{p}=\left(p_{i}\right)_{i \in \mathbb{Z}_{m}}$. Let $z:=x+y \in \mathbb{Z}_{m}^{N}$ be the text obtained by addition modulo m. Prove that the probability distribution of the letters in z is $\vec{p} * \vec{p}$.
b) Suppose that $\vec{p} \in \mathcal{P}$ satisfies $p_{i}>0$ for all $i \in \mathbb{Z}_{m}$. Show that

$$
\vec{p}^{n}:=\underbrace{\vec{p} * \ldots * \vec{p}}_{n \text { factors }}
$$

converges for $n \rightarrow \infty$ to the uniform distribution $\vec{u} \in \mathcal{P}$, cf. problem 10 b).
Hint. Define $M_{n}:=\max _{i \in \mathbb{Z}_{m}}\left\{\left(\vec{p}^{n}\right)_{i}\right\}$ and prove that $\left(M_{n}\right)_{n \in \mathbb{N}}$ is monotonically decreasing.

Problem 12

Let $n \geq 1$ and σ a permutation of the set $\{1,2, \ldots, n\}$. We define a transposition cipher $T=T_{n, \sigma}$: The text is divided into blocks of n^{2} letters. These letters are written as the n rows $\left(x_{i 1} x_{i 2} \ldots x_{i n}\right), i=1,2, \ldots, n$, of an $n \times n$-matrix. The transformed block is the sequence of columns $\left(x_{1 \sigma(j)} x_{2 \sigma(j)} \ldots x_{n \sigma(j)}\right), j=1,2, \ldots, n$, in the permuted order. (If the last block is shorter than n^{2} letters, only the upper part of the matrix is filled, and the columns become shorter.)

The following text was obtained from an English plaintext using a transposition cipher as described above with $n=5$:

RNIHHCASTCPLITITYSEQYASENEEGEURNHFKISBIPOACR

a) Find the plaintext and the permutation σ.
b) For fixed n, let G be the set of all transpositions $T_{n, \sigma}$ as described above. Decide whether G is a group (with respect to composition of maps).

Due: Friday, May 11, 2007, 14:10 h

