Cryptography Problem Sheet #2

Problem 5

A monoalphabetic substitution $\pi : \{A, B, C, \dots, Z\} \to \mathfrak{B}$, where

has been applied to an English plaintext, which was taken from a detective story by Agatha Christie.

Decrypt the ciphertext.

Hint. The plaintext contains the words MISSMARPLE. Remember also that THE is the most frequent trigram in English.

Problem 6

a) Using the extended Euclidean algorithm, calculate the inverse of 55 modulo 89.

b) Calculate integers λ, μ with

 $101\lambda + 211\mu = 1.$

Problem 7

In this problem, the elements of $GL(2, \mathbb{Z}_{26})$ are interpreted as Hill bigram substitutions.

a) Determine an element $\psi \in GL(2, \mathbb{Z}_{26})$ that transforms BERT into HERB. Is ψ uniquely determined?

b) Same problem with PETE and ALEX.

c) Prove that there is no $\psi \in GL(2, \mathbb{Z}_{26})$ that transforms KAIN into ABEL.

Problem 8

A bijective map $\sigma : X \to X$ is called an *involution*, if $\sigma \circ \sigma = id_X$, but $\sigma \neq id_X$. An example is

 $rot13: \mathbb{Z}_{26} \to \mathbb{Z}_{26}, \quad x \mapsto x+13.$

a) Determine all involutions in $Aff(1, \mathbb{Z}_{26})$, which is the group of all maps

 $\sigma: \mathbb{Z}_{26} \to \mathbb{Z}_{26}, \quad x \mapsto \sigma(x) = ax + b, \quad a \in \mathbb{Z}_{26}^*, \ b \in \mathbb{Z}_{26}.$

b) Determine the number of involutions in $GL(2, \mathbb{Z}_{26})$.

Hint. Use $GL(2, \mathbb{Z}_{26}) \cong GL(2, \mathbb{F}_2) \times GL(2, \mathbb{F}_{13})$. Consider the possible eigenvalues of involutions.

Due: Friday, May 4, 2007, 14:10 h

Solutions should be returned in the Cryptography letter box in the first floor of the Institute in front of the library.