Darstellungen endlicher Gruppen Übungsblatt 5

Aufgabe 17

Seien $\varrho_1, \varrho_2 : G \to U(n) \subset GL(n, \mathbb{C})$ zwei äquivalente unitäre Darstellungen einer Gruppe G, d.h. es gebe eine Matrix $S \in GL(n, \mathbb{C})$ mit

$$S\rho_1(g)S^{-1} = \rho_2(g)$$
 für alle $g \in G$.

Man zeige, dass man sogar $S \in SU(n)$ wählen kann.

Aufgabe 18

- a) Man bestimme die Konjugationsklassen der Diedergruppen D_{2n} für alle $n \geq 2$.
- b) Man bestimme die Konjugationsklassen der verallgemeinerten Quaternionengruppen

$$Q_{4m} = \text{gp}\langle x, y : x^{2m} = 1, y^2 = x^m, yxy^{-1} = x^{-1}\rangle, m \ge 2,$$
 (vgl. Aufgabe 3).

Aufgabe 19

Sei K ein Körper und $\phi: G \to G_1$ ein Epimorphismus (= surjektiver Homomorphismus) einer endlichen Gruppe G auf eine Gruppe G_1 . Die Abbildung $\Phi: K[G] \to K[G_1]$ werde definiert durch

$$\Phi\left(\sum \alpha_g \cdot g\right) := \sum \alpha_g \cdot \phi(g)$$

- a) Man zeige, dass Φ ein surjektiver K-Algebra-Homomorphismus ist.
- b) Man gebe einen Epimorphismus $\phi:Q_8\to V_4$ der Quaternionengruppe Q_8 auf die Kleinsche Vierergruppe $V_4=C_2\times C_2$ an.
- c) Sei $\Phi: \mathbb{R}[Q_8] \to \mathbb{R}[V_4]$ der von ϕ induzierte Algebren-Homomorphismus. Man beweise, dass $\operatorname{Ker}(\Phi)$ isomorph zum Schiefkörper \mathbb{H} der Quaternionen ist.
- d) Ersetzt man in c) den Körper \mathbb{R} durch den Körper der komplexen Zahlen \mathbb{C} , so ist der Kern von Φ isomorph zum Matrizenring $M(2 \times 2, \mathbb{C})$.

Aufgabe 20

Sei K ein Körper, G eine endliche Gruppe und V ein K[G]-Modul. Man zeige:

- a) $V_0 := \{v \in V : g \cdot v = v \text{ für alle } g \in G\}$ ist ein K[G]-Untermodul von V.
- b) $V_1 := z_1 \cdot V$, wobei $z_1 := \sum_{g \in G} g$, ist ein K[G]-Untermodul von V_0 .
- c) Falls $Char(K) \nmid |G|$, gilt $V_0 = V_1$.

Abgabetermin: Mittwoch, 17. Januar 2007, 14 Uhr, Übungskasten im 1. Stock