Endliche Körper, Übungsblatt 2

Aufgabe 5

a) Man zeige, dass die beiden Polynome

$$P_1(X) := X^4 + X + 1,$$

 $P_2(X) := X^4 + X^3 + 1$

irreduzibel über dem Körper \mathbb{F}_2 sind.

In den Körpern $K_1 := \mathbb{F}_2[X]/(P_1(X))$ und $K_2 := \mathbb{F}_2[X]/(P_2(X))$ seien die Basen $1, \xi_{\nu}, \xi_{\nu}^2, \xi_{\nu}^3$ eingeführt, wobei

$$\xi_{\nu} := X \mod P_{\nu}(X) \in K_{\nu}, \quad \nu = 1, 2.$$

b) Bekanntlich sind die Körper K_1 und K_2 isomorph (beide sind isomorph zu \mathbb{F}_{16}). Man konstruiere einen expliziten Isomorphismus $\phi: K_1 \to K_2$ mit Angabe der Matrix von ϕ bzgl. der oben genannten Basen.

Aufgabe 6

Im Körper $K := \mathbb{F}_2[X]/(X^4+X+1)$ (vgl. vorherige Aufgabe) gebe man eine Primitivwurzel g (erzeugendes Element von K^*) an und stelle eine Tabelle des Zech-Logaritmus zur Basis g auf.

Aufgabe 7

- a) Welches ist der kleinste Körper (d.h. mit der geringsten Anzahl von Elementen) irgend einer Charakteristik $p \nmid 144$, der eine primitive 144-te Einheitswurzel enthält?
- b) Was ist der kleinste Körper, wenn man zusätzlich verlangt, dass seine Charakteristik gleich 5 ist?

Aufgabe 8

Sei $q=p^n$ eine Primzahlpotenz und $G:=\mathrm{Aut}(\mathbb{F}_q^*)$ die Automorphismen-Gruppe der multiplikativen Gruppe des Körpers \mathbb{F}_q .

- a) Man zeige, dass G abelsch ist. Aus wievielen Elementen besteht G?
- b) Ist G stets zyklisch? (Beweis oder Gegenbeispiel)
- c) Man zeige, dass jeder Automorphismus der additiven Gruppe von \mathbb{F}_q ein \mathbb{F}_p -Vektorraum-Automorphismus ist. Aus wievielen Elementen besteht Aut $(\mathbb{F}_q, +)$?

Abgabetermin: Mittwoch, 17. Mai 2006, 14 Uhr