Cryptography

Problem Sheet \#10

Problem 37 Fermat's factorizing method works as follows: To factorize an odd composite integer $N>5$, set $x_{0}:=\lceil\sqrt{N}\rceil$. For $x:=x_{0}+k,(k=0,1,2,3, \ldots)$, calculate the differences $x^{2}-N$ until a square number appears:

$$
x^{2}-N=y^{2} .
$$

Then $N=(x+y)(x-y)$.
a) Prove that this method always succeeds after a finite number of steps.
b) Suppose $N=p q, p, q$ primes with $|p-q| \leq \alpha \sqrt[4]{N}$, where α is a positive real constant. Estimate the number of steps (as a function of α) necessary to factorize N by the Fermat factorization algorithm.
c) Factorize $N:=1157917699$ using the Fermat factorization algorithm.

Problem 38 Let g, g^{\prime} be primitive roots modulo a prime p. Prove
(i) $\quad \log _{g}\left(g^{\prime}\right) \log _{g^{\prime}}(g)=1 \bmod (p-1)$,
(ii) $\quad \log _{g^{\prime}}(x)=\log _{g}(x) \log _{g^{\prime}}(g) \bmod (p-1) \quad$ for all $x \in(\mathbb{Z} / p)^{*}$.

Problem 39 A Sophie Germain prime is a prime of the form $p=2 q+1$, where q is itself a prime. Show that an integer g is a primitive root modulo a Sophie Germain prime p if and only if $g^{2} \not \equiv 1 \bmod p$ and $\left(\frac{g}{p}\right)=-1$.

Problem 40 a) Prove that 3 is a primitive root modulo $p=2^{16}+1$.
b) Alice and Bob agreed on a secret key K by the Diffie-Hellman method using the (unrealistically small) prime $p=2^{16}+1$ and primitive root $g=3 \in(\mathbb{Z} / p)^{*}$. The data sent from Alice to Bob resp. vice-versa were $a=g^{\alpha}=13242$ and $b=g^{\beta}=48586$. The key $K=g^{\alpha \beta}$ was used to generate a byte sequence $z_{1}, z_{2}, z_{3}, \ldots$ as a one-time-pad in the following way: With

$$
Z_{i}:=K^{i} \bmod p=\sum_{j=0}^{16} b_{i j} 2^{j}, b_{i j} \in\{0,1\}, \quad \text { set } \quad z_{i}:=\sum_{j=4}^{11} b_{i j} 2^{j-4} .
$$

This one-time-pad was xored with an ASCII-plaintext. The resulting cipher text is

```
F02B 1756 5C98 54C5 3923 109E 62E6 C89E 9F6E B9DE
```

Calculate the values of α, β, K and decrypt the ciphertext.

Due: Thursday, June 30, 2005, 14:10 h

