Cryptography

Problem Sheet \#9

Problem 33 Let $N=p q$ be an RSA modulus ($p \neq q$ odd primes) and $e \geq 3$ an encryption exponent for N, i.e. $\operatorname{gcd}(e, \varphi(N))=1$. Let $\lambda(N):=\operatorname{lcm}(p-1, q-1)(\mathrm{lcm}$ $=$ least common multiple). Define d^{\prime} by the congruence

$$
e d^{\prime} \equiv 1 \bmod \lambda(N)
$$

Show that d^{\prime} can be used as a decryption exponent, i.e. $x^{e d^{\prime}} \equiv x$ for all $x \in \mathbb{Z} / N$.
Problem 34 Let $p \neq q$ be two odd Carmichael numbers, $N:=p q$ and e, d two integers with

$$
e d \equiv 1 \bmod (p-1)(q-1) .
$$

Show that

$$
x^{e d} \equiv x \text { for all } x \in(\mathbb{Z} / N)^{*} .
$$

Does this congruence hold even for all $x \in \mathbb{Z} / N$?
Problem 35 Let $N=p q$ ($p \neq q$ odd primes) be an RSA modulus and e an encryption exponent. Prove that the encryption function

$$
E: \mathbb{Z} / N \longrightarrow \mathbb{Z} / N, \quad x \mapsto E(x)=x^{e} \bmod N
$$

has precisely

$$
m:=(1+\operatorname{gcd}(e-1, p-1))(1+\operatorname{gcd}(e-1, q-1))
$$

fixpoints, i.e. elements $x \in \mathbb{Z} / N$ with $E(x)=x$.
Problem 36 Consider the mini RSA system with modulus $N=61937$ and encryption exponent $e=7$.
a) Determine the the decryption exponent d defined by $e d \equiv 1 \bmod \varphi(N)$ and d^{\prime} defined as in problem 33.
b) This RSA system has been used as a bigram ASCII substitution

$$
\mathbb{Z}_{256}^{2} \ni(a, b) \mapsto(\bar{a}, \bar{b}) \in \mathbb{Z}_{256}^{2}
$$

defined by $x:=a \cdot 256+b, y:=x^{e} \bmod N, y=\bar{a} \cdot 256+\bar{b}$.
The following 10 -byte cipher text was obtained in this way
8CDO 5457 692A 52EO 2A9D
Find the plaintext.

Due: Thursday, June 23, 2005, 14:10 h

