Cryptography
 Problem Sheet \#8

Problem 29

a) Let $N=p q$ be the product of two odd primes $p \neq q$. Show that exactly one fourth of the elements of $(\mathbb{Z} / N)^{*}$ are squares and that every square in $(\mathbb{Z} / N)^{*}$ has exactly four square roots.
b) Find all square roots of 210 modulo 9991.

Problem 30

Let $N \geq 9$ be an odd composite integer and let p_{1}, \ldots, p_{r} be the distinct prime divisors of N. We define the following subgroups of $(\mathbb{Z} / N)^{*}$:

$$
\begin{aligned}
& A_{N}:=\left\{x \in(\mathbb{Z} / N)^{*}: x^{N-1}=1\right\}, \\
& B_{N}:=\left\{x \in(\mathbb{Z} / N)^{*}: x^{(N-1) / 2}=1\right\} \\
& C_{N}:=\left\{x \in(\mathbb{Z} / N)^{*}: x^{(N-1) / 2}=\left(\frac{x}{N}\right)\right\}
\end{aligned}
$$

a) Show that

$$
\begin{aligned}
& \# A_{N}=\prod_{i=1}^{r} \operatorname{gcd}\left(N-1, p_{i}-1\right) \\
& \# B_{N}=\prod_{i=1}^{r} \operatorname{gcd}\left(\frac{N-1}{2}, p_{i}-1\right)
\end{aligned}
$$

b) Prove

$$
\left[B_{N}: B_{N} \cap C_{N}\right] \leq 2, \quad\left[C_{N}: B_{N} \cap C_{N}\right] \leq 2
$$

and deduce

$$
\# C_{N}=\gamma_{N} \cdot \# B_{N} \quad \text { with } \gamma_{N} \in\left\{\frac{1}{2}, 1,2\right\} .
$$

Problem 31

Let q be an odd prime such that $p:=2 q-1$ is also prime. Define $N:=p q$. Show that

$$
\# C_{N}=\frac{\varphi(N)}{4}
$$

Problem 32

a) Let $N>7$ be an odd integer such that $x^{(N-1) / 2} \equiv 1$ for all $x \in(\mathbb{Z} / N)^{*}$. Show that N is not prime and that $\left(\frac{x}{N}\right)=-1$ for half of the elements of $(\mathbb{Z} / N)^{*}$.
b) Determine all integers $N<2000$ with the property described in a).

Due: Thursday, June 16, 2005, 14:10 h

