Cryptography Problem Sheet #6

Problem 21

The elements of the field $\mathbb{F}_{2^4} = \mathbb{F}_2[X]/(\varphi(X))$, where φ is the irreducible polynomial $\varphi(X) = X^4 + X + 1 \in \mathbb{F}_2[X]$, are identified with 4-bit integers, where $\xi = \sum_{i=0}^3 a_i 2^i$ corresponds to $\sum a_i X^i \mod \varphi(X)$. We use hexadecimal notation for the 4-bit integers. a) Let $u := 2^{\prime}$, $v := 6^{\prime}$. Calculate u + v, $u \cdot v$, u^3 and u^5 .

b) Show that the element u = 2 is a primitive root of $\mathbb{F}_{2^4}^*$, i.e. a generator of the multiplicative group $\mathbb{F}_{2^4}^*$.

Problem 22

With $F(X) := X^8 + 1 \in \mathbb{F}_2[X]$, define the ring $R := \mathbb{F}_2[X]/(F(X))$, which is an 8-dimensional vector space over \mathbb{F}_2 . Let

$$G(X) := X^4 + X^3 + X^2 + X + 1 \in \mathbb{F}_2[X].$$

Consider the map

$$\psi: R \to R, \quad f \mapsto \psi(f) := G \cdot f \mod F.$$

Show that the matrix of ψ with respect to the basis $(\overline{1}, \overline{X}, \ldots, \overline{X^7})$ of R over \mathbb{F}_2 is

	/1	0	0	0	1	1	1	1
M =	1	1	0	0	0	1	1	1
	1	1	1	0	0	0	1	1
	1	1	1	1	0	0	0	1
	1	1	1	1	1	0	0	0
	0	1	1	1	1	1	0	0
	0	0	1	1	1	1	1	0
	$\left(0 \right)$	0	0	1	1	1	1	1/

Problem 23

With $F(X), G(X) \in \mathbb{F}_2[X]$ as in problem 22, show that gcd(F, G) = 1 and calculate the inverse of $G \mod F$ in the ring $\mathbb{F}_2[X]/(F(X))$, i.e. determine a polynomial $H(X) \in \mathbb{F}_2[X]$ such that

$$G(X)H(X) \equiv 1 \mod F(X).$$

Hint: Use the extended euclidean algorithm.

Problem 24

Using problem 23, calculate the inverse of the matrix $M \in M(8 \times 8, \mathbb{F}_2)$ of problem 22.

Due: Thursday, June 2, 2005, 14:10 h