Cryptography

Problem Sheet \#6

Problem 21

The elements of the field $\mathbb{F}_{2^{4}}=\mathbb{F}_{2}[X] /(\varphi(X))$, where φ is the irreducible polynomial $\varphi(X)=X^{4}+X+1 \in \mathbb{F}_{2}[X]$, are identified with 4-bit integers, where $\xi=\sum_{i=0}^{3} a_{i} 2^{i}$ corresponds to $\sum a_{i} X^{i} \bmod \varphi(X)$. We use hexadecimal notation for the 4 -bit integers.
a) Let $u:=' 2$ ', $v:=$ ' 6 '. Calculate $u+v, u \cdot v, u^{3}$ and u^{5}.
b) Show that the element $u=$ ' 2 ' is a primitive root of $\mathbb{F}_{2^{4}}^{*}$, i.e. a generator of the multiplicative group $\mathbb{F}_{2^{4}}^{*}$.

Problem 22

With $F(X):=X^{8}+1 \in \mathbb{F}_{2}[X]$, define the ring $R:=\mathbb{F}_{2}[X] /(F(X))$, which is an 8 -dimensional vector space over \mathbb{F}_{2}. Let

$$
G(X):=X^{4}+X^{3}+X^{2}+X+1 \in \mathbb{F}_{2}[X] .
$$

Consider the map

$$
\psi: R \rightarrow R, \quad f \mapsto \psi(f):=G \cdot f \bmod F .
$$

Show that the matrix of ψ with respect to the basis $\left(\overline{1}, \bar{X}, \ldots, \overline{X^{7}}\right)$ of R over \mathbb{F}_{2} is

$$
M=\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Problem 23

With $F(X), G(X) \in \mathbb{F}_{2}[X]$ as in problem 22 , show that $\operatorname{gcd}(F, G)=1$ and calculate the inverse of $G \bmod F$ in the ring $\mathbb{F}_{2}[X] /(F(X))$, i.e. determine a polynomial $H(X) \in$ $\mathbb{F}_{2}[X]$ such that

$$
G(X) H(X) \equiv 1 \bmod F(X) .
$$

Hint: Use the extended euclidean algorithm.

Problem 24

Using problem 23, calculate the inverse of the matrix $M \in \mathrm{M}\left(8 \times 8, \mathbb{F}_{2}\right)$ of problem 22 .

Due: Thursday, June 2, 2005, 14:10 h

