Cryptography

Problem Sheet \#5

Problem 17 We define a binary operation $\boxtimes: \mathbb{Z}_{256} \times \mathbb{Z}_{256} \rightarrow \mathbb{Z}_{256}$ using the bijective map

$$
\phi: \mathbb{Z}_{256} \rightarrow \mathbb{F}_{257}^{*}, \quad x \mapsto \phi(x):= \begin{cases}256 & \text { if } x=0 \\ x & \text { if } x \neq 0\end{cases}
$$

as follows: $x \boxtimes y:=\phi^{-1}(\phi(x) \cdot \phi(y))$, where '•' denotes multiplication in the field \mathbb{F}_{257}.
a) Prove that $\left(\mathbb{Z}_{256}, \boxtimes\right)$ is a group, which is isomorphic to $\left(\mathbb{Z}_{256},+\right)$.
b) Show that $\left(\mathbb{Z}_{256},+, \boxtimes\right)$ is not a ring.

Problem 18 A map of the form

$$
f: \mathbb{Z}_{m} \longrightarrow \mathbb{Z}_{m}, \quad x \mapsto f(x)=(a x+b) \bmod m
$$

where a, b are given integers, defines a linear congruential generator in \mathbb{Z}_{m} :
For any initial value $x_{0} \in \mathbb{Z}_{m}$, a sequence $\left(x_{i}\right)_{i \geq 0}$ is defined by the recursion relation $x_{i+1}=f\left(x_{i}\right)$.
The following is the beginning of a sequence by a linear congruential generator in \mathbb{Z}_{25}, which has been identified with the alphabet $\mathrm{A}-\mathrm{Z}$ without the letter J .

TEA

Calculate a, b, and complete the sequence until it becomes periodic.

Problem 19

a) Show that the polynomial $F(T):=T^{7}+T+1 \in \mathbb{F}_{2}[T]$ is irreducible.
b) Prove that for every initial vector $v=\left(b_{0}, b_{1}, \ldots, b_{6}\right) \in \mathbb{F}_{2}^{7} \backslash\{\overrightarrow{0}\}$ the LFSR sequence defined by

$$
b_{k+7}=b_{k}+b_{k+1}
$$

has period length 127.
Problem 20 Use the sequence $\left(b_{i}\right)$ of 19 b) to "shrink" the sequence $\left(x_{i}\right)$ of problem 18 as follows: Define $z_{i}:=x_{k_{i}}$, where k_{i} is the position of the i-th ' 1 ' in the sequence $\left(b_{i}\right)$ (all counts are 0-based).

What is the period of the shrunk sequence $\left(z_{i}\right)$ for the initial vector

$$
v=\left(b_{0}, \ldots, b_{6}\right)=(1,1, \ldots, 1) .
$$

What about other initial vectors?

Due: Friday, May 27, 2005, 14:10 h

