Cryptography Problem Sheet #3

Problem 9 The following text has been obtained by an English plaintext using Vigenère encryption with a keyword of length 4. Find the keyword and decrypt the text.

MRFCDONEKPOLRAZNVOUTKNKSKSJVXAAVXGOVCTVEITORWOZGMOTCVEARXOUGOCOASCHYKCJBENABPTORCUIWOCAVCKHUXSAUOCVQOBYRKKLECTOVCBVBUTYNMEZPBYWGYGYNZHFSBOTVDSPASTPNVAUQVITVDEKHCEILDHLRQYWGSAUFCOTRPOBEDHVHCEUQIEHECANBDOAUOTDRXTPRDHJRXTBEIWORBEPGZLHLODHPBUJVKLYBVEPADHLBETJBWEVSLOAUGOYYNWHEC

Problem 10 Let $x, y \in \mathbb{Z}_m^N$ be random texts in the alphabet \mathbb{Z}_m , where the letters in x have been chosen indepently according to the probability distribution $\vec{p} = (p_i)_{i \in \mathbb{Z}_m}$ and the letters in y according to the probability distribution $\vec{q} = (q_i)_{i \in \mathbb{Z}_m}$.

- (a) Calculate the expectation value $\mathbb{E} \kappa(x, y)$ of the kappa index of x and y.
- (b) Consider the special case where $q_i = p_{\sigma(i)}$ for some permutation $\sigma : \mathbb{Z}_m \to \mathbb{Z}_m$. Prove that for fixed \vec{p} and variable σ the absolute maximum of $\mathbb{E} \kappa(x, y)$ is attained for $\sigma = \mathrm{id}_{\mathbb{Z}_m}$.

Problem 11 Let

$$\mathcal{P} := \{ \vec{p} = (p_i)_{i \in \mathbb{Z}_m} \in \mathbb{R}^m : \sum_{i \in \mathbb{Z}_m} p_i = 1 \text{ and } p_i \ge 0 \text{ for all } i \in \mathbb{Z}_m \}$$

be the set of all probability distributions on \mathbb{Z}_m . For $\vec{p}, \vec{q} \in \mathcal{P}$ we define the convolution product $\vec{r} = \vec{p} * \vec{q}$ by

$$r_n := \sum_{i \in \mathbb{Z}_m} p_i q_{n-i}.$$

(a) Show that $\vec{p} * \vec{q}$ belongs again to \mathcal{P} , and that the convolution product is commutative and associative, i.e.

$$\vec{p} * \vec{q} = \vec{q} * \vec{p}$$
 and $(\vec{p} * \vec{q}) * \vec{r} = \vec{p} * (\vec{q} * \vec{r})$ for all $\vec{p}, \vec{q}, \vec{r} \in \mathcal{P}$.

(b) Let $\vec{u} \in P$ be the uniform distribution, i.e. $u_i = 1/m$ for all $i \in \mathbb{Z}_m$. Prove that $\vec{u} * \vec{p} = \vec{u}$ for all $\vec{p} \in \mathcal{P}$.

Problem 12 With texts $x, y \in \mathbb{Z}_m^N$ as in problem 10, let $z := x + y \in \mathbb{Z}_m^N$ be the text obtained by addition modulo m. Prove that the probability distribution of the letters in z is $\vec{p} * \vec{q}$.