Cryptography

Problem Sheet \#2

Problem 5 A monoalphabetic substitution $\pi:\{A, B, C, \ldots, Z\} \rightarrow \mathfrak{B}$, where

has been applied to an English plaintext, which was taken from a detective story by Agatha Christie. The resulting cipher text is

The plaintext contained the words MISSMARPLE. Decrypt the cipher text.
Problem 6 (CBC mode for monoalphabetic ciphers)
Let $\mathfrak{A}=\{A, B, \ldots, Z\} \cong \mathbb{Z}_{26}$ and $\sigma: \mathbb{Z}_{26} \rightarrow \mathbb{Z}_{26}$ be a permutation. The CBC mode for the monoalphabetic cipher given by σ is defined as follows: Let

$$
x=\left(x_{1}, x_{2}, \ldots x_{N}\right) \in \mathbb{Z}_{26}^{N}
$$

be the plaintext and $y_{0} \in \mathbb{Z}_{26}$ an arbitrary initial element. Then the encrypted text $y=\left(y_{1}, \ldots, y_{N}\right)$ is defined by

$$
y_{i}:=\sigma\left(x_{i}+y_{i-1}\right) \quad \text { for } i=1, \ldots, N .
$$

a) Show that if σ is a Caesar shift, then the decryption of the CBC mode for σ can be reduced to the decryption of an ordinary Caesar shift. Why does this method not work for a general permutation σ ?
b) Decrypt the following cipher text which has been obtained from an English plaintext using the CBC mode of a Caesar shift:

ALBILFKVNXEYTWQXEHCDZQUOVYL

Problem 7 An element σ of a group is called an involution if $\sigma \neq e$, but $\sigma^{2}=e$, where e is the unit element of the group. Determine the number of all involutions $\sigma \in \operatorname{Aff}\left(1, \mathbb{Z}_{26}\right)$.

Problem 8 In the following, the elements φ of the group $\operatorname{Aff}\left(2, \mathbb{Z}_{26}\right)$ are used as bigram substitutions (Hill ciphers of order 2).
a) Determine, if possible, an element $\varphi \in \operatorname{Aff}\left(2, \mathbb{Z}_{26}\right)$ that transforms MUNICH into LONDON and an element $\psi \in \operatorname{Aff}\left(2, \mathbb{Z}_{26}\right)$ that transforms MUNICH into VIENNA.
b) How many elements $\varphi \in \operatorname{Aff}\left(2, \mathbb{Z}_{26}\right)$ transform JUNE into JULY ?

Due: Friday, April 29, 2005, 14:10 h

