Cryptography Problem Sheet #2

Problem 5 A monoalphabetic substitution $\pi : \{A, B, C, \ldots, Z\} \to \mathfrak{B}$, where

has been applied to an English plaintext, which was taken from a detective story by Agatha Christie. The resulting cipher text is

The plaintext contained the words MISSMARPLE. Decrypt the cipher text.

Problem 6 (CBC mode for monoalphabetic ciphers)

Let $\mathfrak{A} = \{A, B, \ldots, Z\} \cong \mathbb{Z}_{26}$ and $\sigma : \mathbb{Z}_{26} \to \mathbb{Z}_{26}$ be a permutation. The CBC mode for the monoalphabetic cipher given by σ is defined as follows: Let

$$x = (x_1, x_2, \dots, x_N) \in \mathbb{Z}_{26}^N$$

be the plaintext and $y_0 \in \mathbb{Z}_{26}$ an arbitrary initial element. Then the encrypted text $y = (y_1, \ldots, y_N)$ is defined by

$$y_i := \sigma(x_i + y_{i-1})$$
 for $i = 1, ..., N$.

a) Show that if σ is a Caesar shift, then the decryption of the CBC mode for σ can be reduced to the decryption of an ordinary Caesar shift. Why does this method not work for a general permutation σ ?

b) Decrypt the following cipher text which has been obtained from an English plaintext using the CBC mode of a Caesar shift:

ALBILFKVNXEYTWQXEHCDZQUOVYL

Problem 7 An element σ of a group is called an involution if $\sigma \neq e$, but $\sigma^2 = e$, where e is the unit element of the group. Determine the number of all involutions $\sigma \in \text{Aff}(1, \mathbb{Z}_{26})$.

Problem 8 In the following, the elements φ of the group $\text{Aff}(2, \mathbb{Z}_{26})$ are used as bigram substitutions (Hill ciphers of order 2).

a) Determine, if possible, an element $\varphi \in Aff(2, \mathbb{Z}_{26})$ that transforms MUNICH into LONDON and an element $\psi \in Aff(2, \mathbb{Z}_{26})$ that transforms MUNICH into VIENNA.

b) How many elements $\varphi \in Aff(2, \mathbb{Z}_{26})$ transform JUNE into JULY ?

Due: Friday, April 29, 2005, 14:10 h