Algebraic Number Theory
 Solution of Problem 45

Problem 45

a) Decompose the polynomial $\bar{\Phi}_{7}(X)=\sum_{k=0}^{6} X^{k} \in \mathbb{F}_{29}[X]$ into a product of linear factors.
b) Write 29 as a product of six prime elements of the ring $\mathbb{Z}\left[e^{2 \pi i / 7}\right]$.

Solution. a) Since \mathbb{F}_{29}^{*} has 28 elements, there exists a subgroup $G \subset \mathbb{F}_{29}^{*}$ of order 7 . The elements $x \in G \backslash\{1\}$ are then the zeros of $\bar{\Phi}_{7}(X)$. Now 2 is a primitive root modulo 29 (since $2^{4} \not \equiv 1$ and $\left.2^{7} \not \equiv 1 \bmod 29\right)$. Therefore $16=2^{4}$ generates the subgroup G,

$$
G=\left\{16^{k}: k=0,1, \ldots, 5\right\}=\{1,16,24,7,25,23,20\} .
$$

Therefore

$$
\begin{aligned}
\Phi_{7}(X) & \equiv(X-16)(X-24)(X-7)(X-25)(X-23)(X-20) \\
& \equiv(X+13)(X+5)(X-7)(X+4)(X+6)(X+9) \bmod 29
\end{aligned}
$$

b) By a theorem proved in the course, one has

$$
(29)=\mathfrak{p}_{1} \cdot \mathfrak{p}_{2} \cdot \mathfrak{p}_{3} \cdot \mathfrak{p}_{4} \cdot \mathfrak{p}_{5} \cdot \mathfrak{p}_{6},
$$

with

$$
\mathfrak{p}_{k}=\left(29, \zeta-x_{k}\right) \subset \mathbb{Z}[\zeta], \quad \zeta=e^{2 \pi i / 7},
$$

where x_{k} are the roots of $\Phi_{7}(X) \bmod 29$. To decompose 29 into a product of 6 primes in $\mathbb{Z}[\zeta]$ amounts to finding generators ξ_{k} of \mathfrak{p}_{k}. We deal only with the ideal

$$
\mathfrak{p}:=(29, \zeta+4),
$$

since the other ideals are obtained from this one by applying the automorphisms of the Galois group. A generator of \mathfrak{p} must have norm 29 , since $\mathbb{Z}[\zeta] / \mathfrak{p} \cong \mathbb{F}_{29}$. By computer aided search one finds that

$$
\xi:=1+\zeta+2 \zeta^{2}=29+(-7+2 \zeta)(\zeta+4)
$$

has indeed $\mathrm{N}(\xi)=29$. The other primes are obtained from ξ by applying the automorphisms $\sigma_{\nu}: \zeta \mapsto \zeta^{\nu}, \nu=1,2, \ldots, 6$. Therefore

$$
29=\xi_{1} \cdot \ldots \cdot \xi_{6}
$$

with the primes

$$
\begin{aligned}
& \xi_{1}=\sigma_{1}(\xi)=\xi=1+\zeta+2 \zeta^{2} \\
& \xi_{2}=\sigma_{2}(\xi)=1+\zeta^{2}+2 \zeta^{4} \\
& \xi_{3}=\sigma_{3}(\xi)=-1-2 \zeta-2 \zeta^{2}-\zeta^{3}-2 \zeta^{4}-2 \zeta^{5}, \\
& \xi_{4}=\sigma_{4}(\xi)=1+2 \zeta+\zeta^{4}, \\
& \xi_{5}=\sigma_{5}(\xi)=1+2 \zeta^{3}+\zeta^{5} \\
& \xi_{6}=\sigma_{6}(\xi)=-\zeta-\zeta^{2}-\zeta^{3}-\zeta^{4}+\zeta^{5} .
\end{aligned}
$$

Of course the decomposition is unique only up to order and multiplication by units (there are many units in $\mathbb{Z}[\zeta]$!).

