Algebraic Number Theory Final Written Exam (Klausur)

Problem 1

Let A be the ring of integers in the quadratic number field $\mathbb{Q}(\sqrt{10})$. Prove that $\sqrt{10}$ is irreducible, but not prime in A.

Problem 2

Let $K=\mathbb{Q}(\sqrt{d}), d \neq 0,1$, squarefree, be a quadratric number field, \mathfrak{o}_{K} its ring of integers and p a rational prime.
a) For $p=23$ give examples of $d<0$ for each of the following cases: p is (i) ramified, (ii) inert, (iii) split in \mathfrak{o}_{K}.
b) For $d=31$ give examples of rational primes p for each of the following cases: p is (i) ramified, (ii) inert, (iii) split in \mathfrak{o}_{K}.

Problem 3

Determine the class number of $\mathbb{Q}(\sqrt{-15})$ and give a representative for every ideal class.

Problem 4

Let $K:=\mathbb{Q}(\theta)$, where θ is a zero of the irreducible polynomial

$$
F(X)=X^{3}+X^{2}+a \in \mathbb{Q}[X] .
$$

Calculate the traces $\operatorname{Tr}_{K / \mathbb{Q}}\left(\theta^{k}\right)$ for $k=1,2,3$.

Problem 5

Let $p \neq q$ be two odd rational primes.
a) Show that the property
$\mathrm{I}(q, p): \quad q$ is inert (i.e. remains prime) in $\mathbb{Z}\left[e^{2 \pi i / p}\right]$
depends only on the residue class of $q \bmod 2 p$.
b) Which rational primes are inert in $\mathbb{Z}\left[e^{2 \pi i / 7}\right]$?

