Algebraic Number Theory Final Written Exam (Klausur)

Problem 1

Let A be the ring of integers in the quadratic number field $\mathbb{Q}(\sqrt{10})$. Prove that $\sqrt{10}$ is irreducible, but not prime in A.

Problem 2

Let $K = \mathbb{Q}(\sqrt{d}), d \neq 0, 1$, squarefree, be a quadratric number field, \mathfrak{o}_K its ring of integers and p a rational prime.

- a) For p = 23 give examples of d < 0 for each of the following cases: p is (i) ramified, (ii) inert, (iii) split in \mathfrak{o}_K .
- b) For d = 31 give examples of rational primes p for each of the following cases: p is (i) ramified, (ii) inert, (iii) split in \mathfrak{o}_K .

Problem 3

Determine the class number of $\mathbb{Q}(\sqrt{-15})$ and give a representative for every ideal class.

Problem 4

Let $K := \mathbb{Q}(\theta)$, where θ is a zero of the irreducible polynomial

$$F(X) = X^3 + X^2 + a \in \mathbb{Q}[X].$$

Calculate the traces $\operatorname{Tr}_{K/\mathbb{Q}}(\theta^k)$ for k = 1, 2, 3.

Problem 5

Let $p \neq q$ be two odd rational primes.

a) Show that the property

I(q,p): q is inert (i.e. remains prime) in $\mathbb{Z}[e^{2\pi i/p}]$

depends only on the residue class of $q \mod 2p$.

b) Which rational primes are inert in $\mathbb{Z}[e^{2\pi i/7}]$?