Algebraic Number Theory
 Problem Sheet \#12

Problem 45

a) Decompose the polynomial $\bar{\Phi}_{7}(X)=\sum_{k=0}^{6} X^{k} \in \mathbb{F}_{29}[X]$ into a product of linear factors.
b) Write 29 as a product of six prime elements of the ring $\mathbb{Z}\left[e^{2 \pi i / 7}\right]$.

Problem 46

Let K be the cyclotomic field $K=\mathbb{Q}(\zeta), \zeta:=e^{2 \pi i / p}$, where p is an odd prime.
Prove that $\mathbb{Q}(\sqrt{p}) \subset K$ for $p \equiv 1 \bmod 4$, and $\mathbb{Q}(\sqrt{-p}) \subset K$ for $p \equiv 3 \bmod 4$.
Hint. Show that the element

$$
S:=\sum_{k=1}^{p-1}\left(\frac{k}{p}\right) \zeta^{k} \in \mathbb{Q}(\zeta)
$$

satisfies $S^{2}=(-1)^{(p-1) / 2} p$.

Problem 47

Let $K:=\mathbb{Q}(\sqrt{-7}) \subset L:=\mathbb{Q}\left(e^{2 \pi i / 7}\right)$. Show that \mathfrak{o}_{L} is a free \mathfrak{o}_{K}-module of rank 3, i.e. there exist elements $\omega_{1}, \omega_{2}, \omega_{3} \in \mathfrak{o}_{L}$, linearly independent over K, such that

$$
\mathfrak{o}_{L}:=\sum_{j=1}^{3} \mathfrak{o}_{K} \cdot \omega_{j} .
$$

Determine explicitly such elements $\omega_{1}, \omega_{2}, \omega_{3}$.

Problem 48

Consider the four rings

$$
\mathbb{Z}[\sqrt{-7}] \subset \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right] \subset \mathbb{Z}\left[\frac{1}{2}, \sqrt{-7}\right] \subset \mathbb{Q}[\sqrt{-7}] .
$$

Which of them are Dedekind rings?

Due: Tuesday, February 1, 2005, 14:10 h
The Final Written Exam (Klausur) will be held on
Thursday, February 3, 2005, 11 o'clock, in room E05

