Algebraic Number Theory Problem Sheet \#11

Problem 41

Let K be an algebraic number field of degree n and $\Lambda \subset K$ a lattice, i.e.

$$
\Lambda=\mathbb{Z} a_{1}+\mathbb{Z} a_{2}+\ldots+\mathbb{Z} a_{n}
$$

with \mathbb{Q}-linearly independent elements $a_{1}, \ldots, a_{n} \in K$. The discriminant of Λ is defined as the discriminant of $\left(a_{1}, \ldots, a_{n}\right)$ (which is independent of the choice of the \mathbb{Z}-basis a_{1}, \ldots, a_{n} of Λ).
Prove that for every $x \in K^{*}$ the following formula holds:

$$
\operatorname{discr}(x \Lambda)=\mathrm{N}(x)^{2} \operatorname{discr}(\Lambda)
$$

Problem 42

Let p be a prime number, $n \geq 1$ an integer and

$$
\Phi_{p^{n}}(X):=\sum_{k=0}^{p-1} X^{p^{n-1} k} \in \mathbb{Q}[X] .
$$

a) Show that $\Phi_{p^{n}}(X)$ is irreducible over \mathbb{Q} and is the minimal polynomial of the p^{n}-th root of unity $\zeta:=e^{2 \pi i / p^{n}}$.
b) For the field extension $\mathbb{Q} \subset \mathbb{Q}(\zeta)$, calculate the norms and traces of the elements

$$
\zeta^{k}, k \geq 0, \quad \text { and } \quad 1-\zeta .
$$

Problem 43

With $\zeta=e^{2 \pi i / p^{n}}$ as in problem 42 , show that $\mathbb{Z}[\zeta]$ is the ring of integers in the algebraic number field $\mathbb{Q}(\zeta)$.

Problem 44

Let $K:=\mathbb{Q}(\sqrt{5})$ and $L:=\mathbb{Q}\left(\zeta_{5}\right)$, where $\zeta_{5}:=e^{2 \pi i / 5}$.
a) Show that $K \subset L$ and $\mathfrak{o}_{K} \subset \mathfrak{o}_{L}$.
b) For $p=2,3,5,11,19$, decompose p as
(i) a product of prime elements of \mathfrak{o}_{K},
(ii) a product of prime elements of \mathfrak{o}_{L}
and compare the decompositions.

Due: Tuesday, January 25, 2005, 14:10 h

