# Algebraic Number Theory <br> Problem Sheet \#10 

## Problem 37

Let $f(X)$ be the quadratic polynomial

$$
f(X)=X^{2}+X+q \in \mathbb{Z}[X],
$$

where $q$ is an integer $\geq 3$.
a) Suppose that $f(n)$ is prime for all integers $n$ with $0 \leq n<\sqrt{q / 3}$. Show that the field $\mathbb{Q}(\sqrt{1-4 q})$ has class number 1 .
b) Deduce from a) and problem 36:

If $f(n)$ is prime for all integers $n$ with $0 \leq n<\sqrt{q / 3}$, then $f(n)$ is prime for all integers $n$ with $0 \leq n \leq q-2$.

## Problem 38

Let $\mathbb{Q}(\theta)$ be a cubic number field, where $\theta$ is a root of the irreducible polynomial

$$
f(X)=X^{3}+a X+b \in \mathbb{Q}[X] .
$$

Calculate the discriminant $\operatorname{discr}\left(1, \theta, \theta^{2}\right)$.

## Problem 39

a) Determine the ring of integers in the algebraic number field $\mathbb{Q}\left(\cos \frac{2 \pi}{7}\right)$.
(Cf. problem 3).
b) Prove that $\mathbb{Q}\left(\cos \frac{2 \pi}{7}\right)$ is Galois over $\mathbb{Q}$.

## Problem 40

In $\mathbb{Z}^{3}$ consider the sublattice

$$
\Lambda:=\left\{(x, y, z) \in \mathbb{Z}^{3}: x+y \equiv 0 \bmod 2, x+2 y+3 z \equiv 0 \bmod 5\right\}
$$

Determine a $\mathbb{Z}$-basis of $\Lambda$, i.e. linearly independent elements $v_{1}, v_{2}, v_{3} \in \Lambda$ with

$$
\Lambda=\mathbb{Z} v_{1}+\mathbb{Z} v_{2}+\mathbb{Z} v_{3}
$$

Due: Tuesday, January 18, 2005, 14:10 h

