Algebraic Number Theory Problem Sheet #10

Problem 37

Let f(X) be the quadratic polynomial

$$f(X) = X^2 + X + q \in \mathbb{Z}[X],$$

where q is an integer ≥ 3 .

a) Suppose that f(n) is prime for all integers n with $0 \le n < \sqrt{q/3}$. Show that the field $\mathbb{Q}(\sqrt{1-4q})$ has class number 1.

b) Deduce from a) and problem 36:

If f(n) is prime for all integers n with $0 \le n < \sqrt{q/3}$, then f(n) is prime for all integers n with $0 \le n \le q-2$.

Problem 38

Let $\mathbb{Q}(\theta)$ be a cubic number field, where θ is a root of the irreducible polynomial

$$f(X) = X^3 + aX + b \in \mathbb{Q}[X].$$

Calculate the discriminant discr $(1, \theta, \theta^2)$.

Problem 39

a) Determine the ring of integers in the algebraic number field $\mathbb{Q}(\cos\frac{2\pi}{7})$. (Cf. problem 3).

b) Prove that $\mathbb{Q}(\cos\frac{2\pi}{7})$ is Galois over \mathbb{Q} .

Problem 40

In \mathbb{Z}^3 consider the sublattice

 $\Lambda := \{ (x, y, z) \in \mathbb{Z}^3 : x + y \equiv 0 \mod 2, \ x + 2y + 3z \equiv 0 \mod 5 \}.$

Determine a \mathbb{Z} -basis of Λ , i.e. linearly independent elements $v_1, v_2, v_3 \in \Lambda$ with

$$\Lambda = \mathbb{Z}v_1 + \mathbb{Z}v_2 + \mathbb{Z}v_3.$$

Due: Tuesday, January 18, 2005, 14:10 h