Algebraic Number Theory Problem Sheet \#9

Problem 33

For the field extension $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2})$, calculate the discriminant

$$
\operatorname{discr}(1, \sqrt[3]{2}, \sqrt[3]{4})
$$

Problem 34

For the field extension $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2})$, calculate the norm

$$
N(x+y \sqrt[3]{2}+z \sqrt[3]{4}), \quad x, y, z \in \mathbb{Q}
$$

Problem 35

Let $p \geq 7$ be a squarefree integer with $p \equiv 3 \bmod 4$. Define the integer q by $p=4 q-1$.
a) Show that the norm of an element $\xi=x+\frac{1+\sqrt{-p}}{2} \in \mathbb{Q}(\sqrt{-p})$ is given by

$$
N(\xi)=x^{2}+x+q .
$$

In the following, suppose that $K=\mathbb{Q}(\sqrt{-p})$ has class number 1 .
b) Prove that q is prime.

Hint. If $\ell<q$ is a prime with $\ell \mid q$, then $\left(\ell, \frac{1+\sqrt{-p}}{2}\right)_{\mathbb{Z}}$ is a non-principal ideal of \mathfrak{o}_{K}.
c) Prove that p is prime.

Hint. If p is not prime, construct a reduced ideal $\left(a, \frac{b+\sqrt{-p}}{2}\right)_{\mathbb{Z}} \subset \mathfrak{o}_{K}$ which is not the unit ideal.

Problem 36*

Let p, q be as in problem 35 and suppose that $K=\mathbb{Q}(\sqrt{-p})$ has class number 1 .
a) Prove that every odd prime $\ell<q$ is inert in \mathfrak{o}_{K}.
b) Prove that the polynomial

$$
f(x):=x^{2}+x+q
$$

takes prime values for $x=0,1,2, \ldots, q-2$.
Due: Tuesday, January 11, 2005, 14:10 h

